Leaders in Cardiovascular Research: A special issue dedicated to Professor Robert Anderson

A special issue of Journal of Cardiovascular Development and Disease (ISSN 2308-3425).

Deadline for manuscript submissions: closed (31 July 2021) | Viewed by 64125

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Bioscience Institute, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
Interests: cardiac development; arterial valves; outflow tract; second heart field; neural crest cells; heterotaxy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institue of Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
Interests: embryonic heart development; left-right asymmetry in development; developmental toxicoogy

Special Issue Information

Dear Colleagues,

In 2019, the Journal of Cardiovascular Development and Disease (JCDD) began a series of Special Issues entitled “Leaders in Cardiovascular Research” in which we will highlight the work and achievements of outstanding and unique researchers that have made major and often paradigm-shifting contributions to the field.

The next publication in this series will focus on the many accomplishments of Prof Robert H. Anderson, who is acknowledged worldwide as the current leading cardiac anatomist and foremost expert on embryonic heart developmental morphology. Over a career of more than 50 years, Bob has collaborated widely and productively and has been the person to whom researchers have turned to help to unravel the mysteries of heart morphogenesis. These collaborations have spanned the spectrum, from clinical cardiac surgery and pathology, to molecular investigations of embryonic cardiovascular development in human and many other species.

This commemorative issue will contain a series of commissioned scientific papers and reviews on topics to which Prof Anderson has made essential contributions. In addition, authors interested in participating in this Special Issue, on any topic in which the work of Prof Anderson has been instrumental, are invited to contact the Guest Editors.

Prof Deborah J Henderson
Prof Nigel A Brown
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Cardiovascular Development and Disease is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 665 KiB  
Editorial
The Editors’ Personal Biography of Professor Robert Anderson
by Nigel A. Brown and Deborah J. Henderson
J. Cardiovasc. Dev. Dis. 2021, 8(1), 6; https://doi.org/10.3390/jcdd8010006 - 19 Jan 2021
Cited by 1 | Viewed by 3039
Abstract
Robert (Bob) Henry Anderson was born in Wellington, Shropshire, UK, in 1942 and he completed his medical training in Manchester (UK) in 1966 [...] Full article

Research

Jump to: Editorial, Review

11 pages, 11852 KiB  
Article
Congenitally Malformed Hearts: Aspects of Teaching and Research Involving Medical Students
by Catherine C. Pickin, James Castle, Vibha Shaji, Adeolu Banjoko, Aimee-Louise Chambault, Anna N. Seale, Anthony Lander, Chetan Mehta and Adrian Crucean
J. Cardiovasc. Dev. Dis. 2021, 8(4), 34; https://doi.org/10.3390/jcdd8040034 - 28 Mar 2021
Cited by 1 | Viewed by 2347
Abstract
To appreciate congenital heart disease fully, a detailed understanding of the anatomical presentation, as well as the physiology, is required. This is often introduced at an advanced stage of training. Professor Anderson has been influential in the Clinical Anatomy Intercalated BSc programme at [...] Read more.
To appreciate congenital heart disease fully, a detailed understanding of the anatomical presentation, as well as the physiology, is required. This is often introduced at an advanced stage of training. Professor Anderson has been influential in the Clinical Anatomy Intercalated BSc programme at the University of Birmingham, in particular in his teaching on Sequential Segmental Analysis. This article describes the experiences of the latest cohort of students on this programme, who undertook varying research projects using the Birmingham Cardiac Archive, with the guidance of Professor Anderson. The projects outlined include various aspects of isomerism, encompassing both the cardiac and abdominal manifestations, as well as details of congenitally corrected transposition of the great arteries and prenatally diagnosed right aortic arch and double arch. These studies all aimed to increase the knowledge base of their respective cardiac malformations and provide a basis for further research. Full article
Show Figures

Figure 1

12 pages, 5627 KiB  
Communication
Sudden Death in Congenital Heart Disease: The Role of the Autopsy in Determining the Actual Cause
by Mary N. Sheppard
J. Cardiovasc. Dev. Dis. 2020, 7(4), 58; https://doi.org/10.3390/jcdd7040058 - 16 Dec 2020
Cited by 3 | Viewed by 2846
Abstract
Congenital heart defects (CHDs) have undergone a large change in epidemiology due to prenatal screening and improved outcomes with surgery and percutaneous procedures. In patients with complex CHD there is an increased risk of sudden cardiac death (SCD) and up to 11% of [...] Read more.
Congenital heart defects (CHDs) have undergone a large change in epidemiology due to prenatal screening and improved outcomes with surgery and percutaneous procedures. In patients with complex CHD there is an increased risk of sudden cardiac death (SCD) and up to 11% of all SCDs in the young occur in people with CHD. It is essential for clinicians to be aware of the risk factors, and for all patients to be followed up in specialised centres. When an SCD occurs, it is important that an autopsy is done and for the pathologist to have an in-depth knowledge of the particular defect and the corrective surgical techniques employed, as well as any complications due to these procedures. Both pathologist and cardiologist should work closely together to explain the cause of death to the family. A terminal cardiac arrhythmia explains many of the SCD cases, often with underlying cardiac fibrosis due to previous procedures. SCD may also be the first presentation of CHD, so great care is required when examining such cases and referral for a detailed expert opinion is recommended in all CHD-SCD cases. Full article
Show Figures

Figure 1

15 pages, 2084 KiB  
Article
Left Ventricular Noncompaction Is More Prevalent in Ventricular Septal Defect Than Other Congenital Heart Defects: A Morphological Study
by Laís Costa Marques, Gabriel Romero Liguori, Ana Carolina Amarante Souza and Vera Demarchi Aiello
J. Cardiovasc. Dev. Dis. 2020, 7(4), 39; https://doi.org/10.3390/jcdd7040039 - 25 Sep 2020
Cited by 5 | Viewed by 2796
Abstract
Left ventricular noncompaction (LVNC) is a condition characterized by prominent ventricular trabeculae and deep intertrabecular recesses and has been described as a possible substrate for arrhythmias, thromboembolism, and heart failure. Herein, we explored the prevalence of LVNC morphology among hearts with congenital heart [...] Read more.
Left ventricular noncompaction (LVNC) is a condition characterized by prominent ventricular trabeculae and deep intertrabecular recesses and has been described as a possible substrate for arrhythmias, thromboembolism, and heart failure. Herein, we explored the prevalence of LVNC morphology among hearts with congenital heart defects (CHD). We examined 259 postnatal hearts with one of the following CHD: isolated ventricular septal defect (VSD); isolated atrial septal defect (ASD); atrioventricular septal defect (AVSD); transposition of the great arteries (TGA); isomerism of the atrial appendages (ISOM); Ebstein’s malformation (EB); Tetralogy of Fallot (TF). Eleven hearts from children who died of non-cardiovascular causes were used as controls. The thickness of the compacted and non-compacted left ventricular myocardial wall was determined and the specimens classified as presenting or not LVNC morphology according to three criteria, as proposed by Chin, Jenni, and Petersen. Normal hearts did not present LVNC, but the CHD group presented different percentages of LVNC in at least one diagnostic criterium. The prevalence of LVNC was respectively, according to Chin’s, Jenni´s and Petersen´s methods: for VSD—54.2%, 35.4%, and 12.5%; ASD—8.3%, 8.3%, and 8.3%; AVSD—2.9%, 2.9%, and 0.0%; TGA—22.6%, 17%, and 5.7%; ISOM—7.1%, 7.1%, and 7.1%; EB—28.6%, 9.5%, and 0.0%; TF—5.9%. 2.9%, and 2.9%. VSD hearts showed a significantly greater risk of presenting LVNC when compared to controls (Chin and Jenni criteria). No other CHD presented similar risk. Current results show some agreement with previous studies, such as LVNC morphology being more prevalent in VSDs. Nonetheless, this is a morphological study and cannot be correlated with symptoms or severity of the CHD. Full article
Show Figures

Figure 1

11 pages, 5106 KiB  
Article
Identification and Morphogenesis of Vestibular Atrial Septal Defects
by Rohit S. Loomba, Justin T. Tretter, Timothy J. Mohun, Robert H. Anderson, Scott Kramer and Diane E. Spicer
J. Cardiovasc. Dev. Dis. 2020, 7(3), 35; https://doi.org/10.3390/jcdd7030035 - 10 Sep 2020
Cited by 6 | Viewed by 3506
Abstract
Background: The vestibular atrial septal defect is an interatrial communication located in the antero-inferior portion of the atrial septum. Reflecting either inadequate muscularization of the vestibular spine and mesenchymal cap during development, or excessive apoptosis within the developing antero-inferior septal component, the [...] Read more.
Background: The vestibular atrial septal defect is an interatrial communication located in the antero-inferior portion of the atrial septum. Reflecting either inadequate muscularization of the vestibular spine and mesenchymal cap during development, or excessive apoptosis within the developing antero-inferior septal component, the vestibular defect represents an infrequently recognized true deficiency of the atrial septum. We reviewed necropsy specimens from three separate archives to establish the frequency of such vestibular defects and their associated cardiac findings, providing additional analysis from developing mouse hearts to illustrate their potential morphogenesis. Materials and methods: We analyzed the hearts in the Farouk S. Idriss Cardiac Registry at Ann and Robert H. Lurie Children’s Hospital in Chicago, IL, the Van Mierop Archive at the University of Florida in Gainesville, Florida, and the archive at Johns Hopkins All Children’s Heart Institute in St. Petersburg, Florida, identifying all those exhibiting a vestibular atrial septal defect, along with the associated intracardiac malformations. We then assessed potential mechanisms for the existence of such defects, based on the assessment of 450 datasets of developing mouse hearts prepared using the technique of episcopic microscopy. Results: We analyzed a total of 2100 specimens. Of these, 68 (3%) were found to have a vestibular atrial septal defect. Comparable defects were identified in 10 developing mouse embryos sacrificed at embryonic data 15.5, by which stage the antero-inferior component of the atrial septum is usually normally formed. Conclusion: The vestibular defect is a true septal defect located in the muscular antero-inferior rim of the oval fossa. Our retrospective review of autopsied hearts suggests that the defect may be more common than previously thought. Increased awareness of the location of the defect should optimize its future clinical identification. We suggest that the defect exists because of failure, during embryonic development, of union of the components that bind the leading edge of the primary atrial septum to the atrioventricular junctions, either because of inadequate muscularisation or excessive apoptosis. Full article
Show Figures

Figure 1

24 pages, 22141 KiB  
Article
Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development
by Catherine A. Stothard, Silvia Mazzotta, Arjun Vyas, Jurgen E. Schneider, Timothy J. Mohun, Deborah J. Henderson, Helen M. Phillips and Simon D. Bamforth
J. Cardiovasc. Dev. Dis. 2020, 7(2), 20; https://doi.org/10.3390/jcdd7020020 - 25 May 2020
Cited by 7 | Viewed by 4055
Abstract
The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and [...] Read more.
The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and the outflow tract of the heart. Aberrant development of these structures leads to interruption of the aortic arch and double outlet right ventricle, abnormalities that are a leading cause of morbidity in 22q11 Deletion Syndrome (DS) patients. We have recently shown that Pax9 functionally interacts with the 22q11DS gene Tbx1 in the pharyngeal endoderm for 4th pharyngeal arch artery morphogenesis, with double heterozygous mice dying at birth with interrupted aortic arch. Mice lacking Pax9 die perinatally with complex cardiovascular defects and in this study we sought to validate further potential genetic interacting partners of Pax9, focussing on Gbx2 which is down-regulated in the pharyngeal endoderm of Pax9-null embryos. Here, we describe the Gbx2-null cardiovascular phenotype and demonstrate a genetic interaction between Gbx2 and Pax9 in the pharyngeal endoderm during cardiovascular development. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

16 pages, 16725 KiB  
Review
Atrioventricular Septal Defect: What Is in a Name?
by Michael Rigby
J. Cardiovasc. Dev. Dis. 2021, 8(2), 19; https://doi.org/10.3390/jcdd8020019 - 15 Feb 2021
Cited by 9 | Viewed by 5359
Abstract
Robert Anderson has made a huge contribution to almost all aspects of morphology and understanding of congenital cardiac malformations, none more so than the group of anomalies that many of those in the practice of paediatric cardiology and adult congenital heart disease now [...] Read more.
Robert Anderson has made a huge contribution to almost all aspects of morphology and understanding of congenital cardiac malformations, none more so than the group of anomalies that many of those in the practice of paediatric cardiology and adult congenital heart disease now call ‘Atrioventricular Septal Defect’ (AVSD). In 1982, with Anton Becker working in Amsterdam, their hallmark ‘What’s in a name?’ editorial was published in the Journal of Thoracic and Cardiovascular Surgery. At that time most described the group of lesions as ‘atrioventricular canal malformation’ or ‘endocardial cushion defect’. Perhaps more significantly, the so-called ostium primum defect was thought to represent a partial variant. It was also universally thought, at that time, that the left atrioventricular valve was no more than a mitral valve with a cleft in the aortic leaflet. In addition to this, lesions such as isolated cleft of the mitral valve, large ventricular septal defects opening to the inlet of the right and hearts with straddling or overriding tricuspid valve were variations of the atrioventricular canal malformation. Anderson and Becker emphasised the differences between the atrioventricular junction in the normal heart and those with a common junction for which they recommended the generic name, ‘atrioventricular septal defect’. As I will discuss, over many years, they continued to work with clinical cardiologists and cardiac surgeons to refine diagnostic criteria and transform the classification and understanding of this complex group of anomalies. Their emphasis was always on accurate diagnosis and communication, which is conveyed in this review. Full article
Show Figures

Figure 1

12 pages, 3310 KiB  
Review
Critical Assessment of the Concepts and Misconceptions of the Cardiac Conduction System over the Last 100 Years: The Personal Quest of Robert H. Anderson
by Eduardo Back Sternick and Damián Sánchez-Quintana
J. Cardiovasc. Dev. Dis. 2021, 8(1), 5; https://doi.org/10.3390/jcdd8010005 - 19 Jan 2021
Cited by 6 | Viewed by 3586
Abstract
Anatomical concepts regarding the conduction system of the heart have been a matter of debate since pioneering work done at the beginning of the 20th century. Robert H. Anderson was actively involved in this field for half a century. We aimed to investigate [...] Read more.
Anatomical concepts regarding the conduction system of the heart have been a matter of debate since pioneering work done at the beginning of the 20th century. Robert H. Anderson was actively involved in this field for half a century. We aimed to investigate how his own concepts evolved over time. We have assessed anatomical concepts relating to the cardiac conduction system appearing since the key contributions made in the initial decade of the 20th century, analyzing them from the perspective of Robert H. Anderson, particularly focusing on the anatomical aspects of structures such as accessory atrioventricular pathways, including the so-called Mahaim-type fibers, connections between the atrioventricular node and the atrial myocardium, and so-called “specialized” internodal atrial tracts. To accomplish this task, we have taken as our starting point the initial concepts published in the first decade of the century, along with those subsequently reported up to 1976, and assessing them in the light of our most recently published works. The concepts put forward by Robert Anderson with regard to atrioventricular nodal bypass tracts, atrioventricular nodal inputs, decrementally conducting accessory pathways, and “tracts” for internodal atrial conduction, have remained consistent along the time frame of half a century. Full article
Show Figures

Figure 1

33 pages, 2728 KiB  
Review
The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction
by Laura Fedele and Thomas Brand
J. Cardiovasc. Dev. Dis. 2020, 7(4), 54; https://doi.org/10.3390/jcdd7040054 - 24 Nov 2020
Cited by 39 | Viewed by 10376
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac [...] Read more.
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS. Full article
Show Figures

Figure 1

13 pages, 1100 KiB  
Review
Muscularization of the Mesenchymal Outlet Septum during Cardiac Development
by Maurice J. B. van den Hoff and Andy Wessels
J. Cardiovasc. Dev. Dis. 2020, 7(4), 51; https://doi.org/10.3390/jcdd7040051 - 04 Nov 2020
Cited by 5 | Viewed by 2814
Abstract
After the formation of the linear heart tube, it becomes divided into right and left components by the process of septation. Relatively late during this process, within the developing outflow tract, the initially mesenchymal outlet septum becomes muscularized as the result of myocardialization. [...] Read more.
After the formation of the linear heart tube, it becomes divided into right and left components by the process of septation. Relatively late during this process, within the developing outflow tract, the initially mesenchymal outlet septum becomes muscularized as the result of myocardialization. Myocardialization is defined as the process in which existing cardiomyocytes migrate into flanking mesenchyme. Studies using genetically modified mice, as well as experimental approaches using in vitro models, demonstrate that Wnt and TGFβ signaling play an essential role in the regulation of myocardialization. They also show the significance of the interaction between cardiomyocytes, endocardial derived cells, neural crest cells, and the extracellular matrix. Interestingly, Wnt-mediated non-canonical planar cell polarity signaling was found to be a crucial regulator of myocardialization in the outlet septum and Wnt-mediated canonical β-catenin signaling is an essential regulator of the expansion of mesenchymal cells populating the outflow tract cushions. Full article
Show Figures

Figure 1

21 pages, 755 KiB  
Review
The Mesenchymal Cap of the Atrial Septum and Atrial and Atrioventricular Septation
by Ray Deepe, Emily Fitzgerald, Renélyn Wolters, Jenna Drummond, Karen De Guzman, Maurice J.B. van den Hoff and Andy Wessels
J. Cardiovasc. Dev. Dis. 2020, 7(4), 50; https://doi.org/10.3390/jcdd7040050 - 04 Nov 2020
Cited by 9 | Viewed by 3295
Abstract
In this publication, dedicated to Professor Robert H. Anderson and his contributions to the field of cardiac development, anatomy, and congenital heart disease, we will review some of our earlier collaborative studies. The focus of this paper is on our work on the [...] Read more.
In this publication, dedicated to Professor Robert H. Anderson and his contributions to the field of cardiac development, anatomy, and congenital heart disease, we will review some of our earlier collaborative studies. The focus of this paper is on our work on the development of the atrioventricular mesenchymal complex, studies in which Professor Anderson has played a significant role. We will revisit a number of events relevant to atrial and atrioventricular septation and present new data on the development of the mesenchymal cap of the atrial septum, a component of the atrioventricular mesenchymal complex which, thus far, has received only moderate attention. Full article
Show Figures

Figure 1

17 pages, 4596 KiB  
Review
Assessing Myocardial Architecture: The Challenges and Controversies
by Peter Agger and Robert S. Stephenson
J. Cardiovasc. Dev. Dis. 2020, 7(4), 47; https://doi.org/10.3390/jcdd7040047 - 29 Oct 2020
Cited by 6 | Viewed by 2803
Abstract
In recent decades, investigators have strived to describe and quantify the orientation of the cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are, however, striking differences between the investigations from both a technical and methodological standpoint, [...] Read more.
In recent decades, investigators have strived to describe and quantify the orientation of the cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are, however, striking differences between the investigations from both a technical and methodological standpoint, thus limiting their comparability and impeding the drawing of appropriate physiological conclusions from the structural assessments. This review aims to elucidate these differences, and to propose guidance to establish methodological consensus in the field. The review outlines the theory behind myocyte orientation analysis, and importantly has identified pronounced differences in the definitions of otherwise widely accepted concepts of myocytic orientation. Based on the findings, recommendations are made for the future design of studies in the field of myocardial morphology. It is emphasised that projection of myocyte orientations, before quantification of their angulation, introduces considerable bias, and that angles should be assessed relative to the epicardial curvature. The transmural orientation of the cardiomyocytes should also not be neglected, as it is an important determinant of cardiac function. Finally, there is considerable disagreement in the literature as to how the orientation of myocardial aggregates should be assessed, but to do so in a mathematically meaningful way, the normal vector of the aggregate plane should be utilised. Full article
Show Figures

Graphical abstract

15 pages, 2034 KiB  
Review
An Appreciation of Anatomy in the Molecular World
by Bjarke Jensen, Vincent M. Christoffels and Antoon F. M. Moorman
J. Cardiovasc. Dev. Dis. 2020, 7(4), 44; https://doi.org/10.3390/jcdd7040044 - 15 Oct 2020
Cited by 3 | Viewed by 2893
Abstract
Robert H. Anderson is one of the most important and accomplished cardiac anatomists of the last decades, having made major contributions to our understanding of the anatomy of normal hearts and the pathologies of acquired and congenital heart diseases. While cardiac anatomy as [...] Read more.
Robert H. Anderson is one of the most important and accomplished cardiac anatomists of the last decades, having made major contributions to our understanding of the anatomy of normal hearts and the pathologies of acquired and congenital heart diseases. While cardiac anatomy as a research discipline has become largely subservient to molecular biology, anatomists like Professor Anderson demonstrate anatomy has much to offer. Here, we provide cases of early anatomical insights on the heart that were rediscovered, and expanded on, by molecular techniques: migration of neural crest cells to the heart was deduced from histological observations (1908) and independently shown again with experimental interventions; pharyngeal mesoderm is added to the embryonic heart (1973) in what is now defined as the molecularly distinguishable second heart field; chambers develop from the heart tube as regional pouches in what is now considered the ballooning model by the molecular identification of regional differentiation and proliferation. The anatomical discovery of the conduction system by Purkinje, His, Tawara, Keith, and Flack is a special case because the main findings were never neglected in later molecular studies. Professor Anderson has successfully demonstrated that sound knowledge of anatomy is indispensable for proper understanding of cardiac development. Full article
Show Figures

Figure 1

10 pages, 12854 KiB  
Review
A Rare Presentation of Common Arterial Trunk with Intact Ventricular Septum
by Diane E. Spicer and Thora S. Steffensen
J. Cardiovasc. Dev. Dis. 2020, 7(4), 43; https://doi.org/10.3390/jcdd7040043 - 12 Oct 2020
Cited by 3 | Viewed by 2881
Abstract
Common arterial trunk is a rare anomaly on its own, but with an intact ventricular septum it is extremely rare. An unexpected finding at autopsy prompted a review of the literature and a review of the developmental considerations associated with the outflow tracts. [...] Read more.
Common arterial trunk is a rare anomaly on its own, but with an intact ventricular septum it is extremely rare. An unexpected finding at autopsy prompted a review of the literature and a review of the developmental considerations associated with the outflow tracts. The case presented was an intrauterine fetal death at 37 weeks gestation. At autopsy, the only anatomic abnormalities were pulmonary dominant common arterial trunk with an intact ventricular septum, ventriculo-arterial septal defect, coarctation and widely patent arterial duct. A review of the literature and the developmental concepts related to the outflow tracts of the developing heart demonstrate the rare nature of this particular variation of common arterial trunk. Full article
Show Figures

Figure 1

27 pages, 4447 KiB  
Review
New Concepts in the Development and Malformation of the Arterial Valves
by Deborah J. Henderson, Lorraine Eley and Bill Chaudhry
J. Cardiovasc. Dev. Dis. 2020, 7(4), 38; https://doi.org/10.3390/jcdd7040038 - 24 Sep 2020
Cited by 18 | Viewed by 4382
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field [...] Read more.
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated. Full article
Show Figures

Figure 1

20 pages, 24653 KiB  
Review
Virtual Dissection: Emerging as the Gold Standard of Analyzing Living Heart Anatomy
by Justin T. Tretter, Saurabh Kumar Gupta, Yu Izawa, Tatsuya Nishii and Shumpei Mori
J. Cardiovasc. Dev. Dis. 2020, 7(3), 30; https://doi.org/10.3390/jcdd7030030 - 12 Aug 2020
Cited by 20 | Viewed by 4777
Abstract
Traditionally, gross cardiac anatomy has been described mainly based on the findings in the dissection suite. Analyses of heart specimens have contributed immensely towards building a fundamental knowledge of cardiac anatomy. However, there are limitations in analyzing the autopsied heart removed from the [...] Read more.
Traditionally, gross cardiac anatomy has been described mainly based on the findings in the dissection suite. Analyses of heart specimens have contributed immensely towards building a fundamental knowledge of cardiac anatomy. However, there are limitations in analyzing the autopsied heart removed from the thorax. Three-dimensional imaging allows visualization of the blood-filled heart in vivo in attitudinally appropriate fashion. This is of paramount importance for not only demonstration of cardiac anatomy for educational purposes, but also for the detailed anatomical evaluation in patients with acquired and congenital heart disease. In this review, we discuss the advantages of three-dimensional imaging, specifically focusing on virtual dissection, a volume rendering-based reconstruction technique using computed tomographic data. We highlight examples of three-dimensional imaging in both education and guiding patient management. Full article
Show Figures

Figure 1

Back to TopTop