Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Identification of Cryptic Whitefly Species
2.2. B. tabaci MEAM1 and MED Mass Rearing
2.3. Treatments and Experimental Design
2.4. Description of the Site and Experiment Implementation and Conduction
2.5. Variables Analyzed
2.5.1. Analysis of the Physiological Aspects of Tomato
2.5.2. Biochemical Analyses in Tomato
2.6. Statistical Analysis
3. Results
3.1. Physiological Aspects of Tomato
3.2. Biochemical Aspects of Tomato
4. Discussion
4.1. Physiological Aspects of Tomato
4.2. Biochemical Aspects of Tomato
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT—Food and Agriculture Organization. 2021. Available online: http://www.fao.org/faostat/es/#data/QC (accessed on 1 April 2021).
- Mutisya, S.; Saidi, M.; Opiyo, A.; Ngouajio, M. Synergistic effects of agronet covers and companion cropping on reducing whiteflies infestation and improving yield of open field-grown tomatoes. Agronomy 2016, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Kanakala, S.; Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 2019, 14, e0213946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Pan, H.; Xie, W.; Wang, S.; Wu, Q.; Chen, G.; Tian, L.; Zhou, X.; Liu, Y.; Zhang, Y. Different effects of exogenous jasmonic acid on preference and performance of viruliferous Bemisia tabaci B and Q. Entomol. Exp. Appl. 2017, 165, 148–158. [Google Scholar] [CrossRef]
- Mugerwa, H.; Seal, S.; Wang, H.L.; Patel, M.V.; Kabaalu, R.; Omongo, C.A.; Alicai, T.; Tairo, F.; Ndunguru, J.; Sseruwagi, P.; et al. African ancestry of New World, Bemisia tabaci-whiteflies species. Sci. Rep. 2018, 8, 2734. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, L.A.; Muller, C.; Bueno, R.C.O.F.; Santos, A.; Bello, V.H.; De Marchi, B.R.; Watanabe, L.F.M.; Marubayashi, J.M.; Santos, B.R.; Yuki, V.A.; et al. Distribution and phylogenetics of whiteflies and their endosymbiont relationships after the Mediterranean species invasion in Brazil. Sci. Rep. 2018, 8, 14589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Dai, P.; Yang, X.; Ruan, C.C.; Biondi, A.; Desneux, N.; Zang, L.S. Selectivity of novel and traditional insecticides used for management of whiteflies on the parasitoid Encarsia formosa. Pest Manag. Sci. 2019, 75, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Tamilselvan, R.; Mahalingam, C.A.; Mohankumar, S.; Senguttuvan, K. Characterization of resistance mechanisms to the whiteflies, Bemisia tabaci Asia-II-8 (Hemiptera: Aleyrodidae) in cotton genotypes. Int. J. Trop. Insect Sci. 2020, 8, 373–381. [Google Scholar] [CrossRef]
- Bonaventure, G. Plants Recognize Herbivorous Insects by Complex Signalling Networks. Annu. Plant Rev. 2018, 47, 1–35. [Google Scholar]
- Xu, Y.; Qu, C.; Sun, X.; Jia, Z.; Xue, M.; Zhao, H.; Zhou, X. Nitric Oxide Boosts Bemisia tabaci Performance through the Suppression of Jasmonic Acid Signaling Pathway in Tobacco Plants. Front. Physiol. 2020, 11, 2–4. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Tan, W.; Xue, M.; Zhao, H.; Wang, C. Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East-Asia Minor 1) nymphs. Arthropod Plant Interact. 2013, 7, 431–443. [Google Scholar] [CrossRef]
- War, A.R.; Munghate, R.S.; Sharma, H.C. Expression of different mechanisms of resistance to insects in groundnut under field conditions. Phytoparasit. 2015, 43, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.G.; Chapman, K.; Louis, J.; Heng-Moss, T.; Sarath, G. Plant tolerance: A unique approach to control hemipteran pests. Front. Plant Sci. 2016, 7, 1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broetto, F.; Gomes, E.R.; Joca, T.A.C. O Estresse das Planta, 1st ed.; UNESP: São Paulo, Brazil, 2017; pp. 10–195. [Google Scholar]
- Zhao, H.; Sun, X.; Xue, M.; Zhang, X.; Li, Q. Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: Catalase may play a dominant role. PLoS ONE 2016, 11, e0165454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Z.; Hua, B.Z.; Zhang, F. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod Plant Interact. 2008, 2, 209–213. [Google Scholar] [CrossRef]
- Bhonwong, A.; Stout, M.J.; Attajarusit, J.; Tantasawat, P. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J. Chem. Ecol. 2009, 35, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Liu, H.; Li, X.; Xiao, J.; Wang, S. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol. Plant. 2014, 152, 486–500. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.; Frohlich, D.R.; Rosell, R.C. A batata-doce ou mosca-branca: Biótipos de Bemisia tabaci ou um complexo de espécies? Annu. Rev. Entomol. 1995, 40, 511–534. [Google Scholar] [CrossRef]
- Costa, A.S.; Russell, L.M. Falha de Bemisia tabaci em reprodução em plantas de mandioca no Brasil (Homoptera: Aleyrodidae). Cienc. Culto. 1975, 27, 388–390. [Google Scholar]
- Sun, D.B.; Liu, Y.Q.; Qin, L.; Xu, J.; Li, F.F.; Liu, S.S. Competitive displacement between two invasive whiteflies: Insecticide application and host plant effects. Bull. Entomol. Res. 2013, 103, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Bello, V.H.; Watanabe, L.F.M.; Fusco, L.M.H.; De Marchi, B.R.; Da Silva, F.B.; Gorayeb, E.S.; Moura, M.F.; De Souza, I.M.; Muller, C.; Salas, F.J.S.; et al. Outbreaks of Bemisia tabaci Mediterranean species in vegetable crops in São Paulo and Paraná States, Brazil. Bull. Entomol. Res. 2020, 110, 487–496. [Google Scholar] [CrossRef]
- Watanabe, L.F.M.; Bello, V.H.; De Marchi, B.R.; da Silva, F.B.; Fusco, L.M.; Sartori, M.M.P.; Pavan, M.A.; Krause-Sakate, R. Performance and competitive displacement of Bemisia tabaci MEAM1 and MED cryptic species on different host plants. Crop. Prot. 2019, 124, 104860. [Google Scholar] [CrossRef]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotech. 1991, 10, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Barro, P.J.; Scott, K.D.; Graham, G.C.; Lange, C.L.; Schutze, M.K. Isolation and characterization of microsatellite loci in Bemisia tabaci. Mol. Ecol. Notes 2003, 3, 40–43. [Google Scholar] [CrossRef]
- Kontsedalov, S.; Abu-Moch, F.; Lebedev, G.; Czosnek, H.; Horowitz, A.R.; Ghanim, M. Bemisia tabaci Biotype Dynamics and Resistance to Insecticides in Israel During the Years 2008–2010. J. Integr. Agric. 2012, 11, 312–320. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Krall, J.P.; Edwards, G.E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 1992, 86, 180–187. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Brasil, O.G.; Oliveira, A.M. Poliaminas e atividade da peroxidase em feijão (Phaseolus vulgaris L.) cultivado sob estresse salino. Sci. Agrícola 1999, 56, 21–26. [Google Scholar] [CrossRef]
- Kar, M.; Mishra, D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 1977, 59, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 44–158. [Google Scholar]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar]
- Barbosa, J.C.; Maldonado Junior, W. AgroEstat—Sistema Para Análises Estatísticas de Ensaios Agronômicos; FCAV/UNESP: Jaboticabal, Brazil, 2015; p. 396. [Google Scholar]
- Perring, T.M.; Stansly, P.A.; Liu, T.X.; Smith, H.A.; Andreason, S.A. Sustainable Management of Arthropod Pests of Tomato: Whiteflies: Biology, Ecology, and Management; Academic Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Flexas, J.; Barón, M.; Bota, J.; Ducruet, J.M.; Gallé, A.; Galmés, J.; Jiménez, M.; Pou, A.; Ribas-Carbó, M.; Sajnani, C.; et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). J. Exp. Bot. 2009, 60, 2361–2377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killi, D.; Haworth, M. Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. Plants 2017, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiz, L.; Zeiger, E.; Møller, L.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; pp. 1–888. [Google Scholar]
- Do Gomes, A.M.S.V.; de Reis, F.O.; de Lemos, R.N.S.; Mondego, J.M.; Braun, H.; Araujo, J. R.G. Physiological charactritics of citrus plants infested with citrus blackfly. Rev. Bras. Entomol. 2019, 63, 119–123. [Google Scholar] [CrossRef]
- De Ferraz, R.L.S.; de Melo, A.S.; Suassuna, J.F.; de Brito, M.E.B.; Fernandes, P.D.; da Júnior, E.S.N. Trocas gasosas e eficiência fotossintética em ecótipos de feijoeiro cultivados no semiárido. Pesqui. Agropecuária Trop. 2012, 42, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.G.; Dutra, W.F.; Dutra, A.F.; de Oliveira, I.M.; Filgueiras, L.M.B.; de Melo, A.S. Gas exchange and chlorophyll fluorescence of eggplant grown under different irrigation depths. Rev. Bras. Eng. Agrícola E Ambient. 2015, 19, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence: A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, B.; Wang, G.X. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris. Environ. Sci. Pollut. Res. 2015, 22, 7766–7775. [Google Scholar] [CrossRef] [PubMed]
- Kromdijk, J.; Głowacka, K.; Leonelli, L.; Gabilly, S.T.; Iwai, M.; Niyogi, K.K.; Long, S.P. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 2016, 354, 857–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.; Ahammed, G.J.; Li, X.; Shi, K. Elevated CO2 Photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front. Plant Sci. 2018, 9, 1739. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Qiu, L.; Guo, L.; Jing, S.; Chen, X.; Cui, X.; Yang, Y. Salicylic acid alleviates aluminum-induced inhibition of biomass by enhancing photosynthesis and carbohydrate metabolism in Panax notoginseng. Plant Soil 2019, 445, 183–198. [Google Scholar] [CrossRef]
- Lopes, J.P.; Machado, E.C.; Deuber, R.; Machado, R.S. Análise de crescimento e trocas gasosas na cultura de milho em plantio direto e convencional. Bragantia 2009, 68, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Oliver, K.M.; Xie, W.; Wu, Q.; Wang, S.; Zhang, Y. The whiteflies-associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Funct. Ecol. 2015, 29, 1007–1018. [Google Scholar] [CrossRef]
- Hilker, M.; Fatouros, N.E. Resisting the onset of herbivore attack: Plants perceive and respond to insect eggs. Curr. Opin. Plant Biol. 2016, 32, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Geuss, D.; Stelzer, S.; Lortzing, T.; Steppuhn, A. Solanum dulcamara’s response to eggs of an insect herbivore comprises ovicidal hydrogen peroxide production. Plant Cell Environ. 2017, 40, 2663–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latournerie-Moreno, L.; Ic-Caamal, A.; Ruiz-Sánchez, E.; Ballina-Gómez, H.; Islas-Flores, I.; Chan-Cupul, W.; González-Mendoza, D. Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L. Chil. J. Agric. Res. 2015, 75, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, L.; Zheng, Y.; Feng, J.; Ruan, Y.; Diao, S.; Chen, S.; Jiang, B.; Shen, Z.; Lu, H. Effects of Bemisia tabaci (Gennadius) infestation and squash silverleaf disorder on Cucurbita pepo L. leaf. Sci. Hortic. 2017, 217, 8–16. [Google Scholar] [CrossRef]
- Kurra, S.; Pathipati, U.R. Whiteflies, Trialeurodes ricini (Genn) feeding stress induced defense responses in castor, Ricinus communis L. plants. J. Asia Pac. Entomol. 2015, 18, 425–431. [Google Scholar] [CrossRef]
- Harborne, J.B. The comparative biochemistry of phytoalexin induction in plants. Biochem. Syst. Ecol. 1999, 27, 335–367. [Google Scholar] [CrossRef]
- Vlot, C.A.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [Green Version]
- Scheidt, H.A.; Pampel, A.; Nissler, L.; Gebhardt, R.; Huster, D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta-Biomembr. 2004, 1663, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Chen, G.; Mescher, M.C.; Peng, Z.; Xie, W.; Wang, S.; Wu, Q.; Liu, J.; Li, C.; Wang, W.; et al. Whiteflies aggregation on tomato is mediated by feeding-induced changes in plant metabolites that influence the behaviour and performance of conspecifics. Funct. Ecol. 2018, 32, 1180–1193. [Google Scholar] [CrossRef]
Treatments | A | gs | A/Ci | Fv’/Fm’ | NPQ |
---|---|---|---|---|---|
Control | 15.93 ± 2.68 a | 0.27 ± 0.07 ab | 0.05 ± 0.01 a | 0.57 ± 0.03 ab | 1.39 ± 0.25 ab |
MED | 7.09 ± 1.71 b | 0.13 ± 0.09 b | 0.02 ± 0.01 c | 0.53 ± 0.03 b | 1.56 ± 0.21 a |
MEAM1 | 12.60 ± 1.52 a | 0.40 ± 0.10 a | 0.03± 0.01 b | 0.60 ± 0.04 a | 1.06 ± 0.14 b |
Treatments | SOD | POD | PPO | Total Phenols | Flavonoids | |
---|---|---|---|---|---|---|
0 | Control | 41.03 ± 0.13 a | 0.15 ± 0.00 a | 173.38 ± 21.79 c | 126.55 ± 13.97 b | 61.53 ± 1.25 b |
MED | 40.99 ± 0.34 a | 0.17 ± 0.01 a | 239.49 ± 5.34 b | 167.86 ± 7.83 a | 73.68 ± 4.66 a | |
MEAM1 | 40.97 ± 0.02 a | 0.08 ±0.00 b | 389.13 ± 5.34 a | 150.81 ± 4.85 a | 63.82 ± 5.87 ab | |
2 | Control | 41.47 ± 0.01 a | 0.14 ± 0.02 b | 106.76 ± 7.14 c | 121.76 ± 13.97 b | 53.62 ± 1.31 a |
MED | 41.16 ± 0.28 a | 0.30 ±0.04 a | 467.13 ± 62.79 a | 192.95 ± 7.83 a | 57.51 ± 5.87 a | |
MEAM1 | 40.97 ± 0.44 a | 0.21 ± 0.00 b | 323.91 ± 22.31 b | 177.89 ± 3.21 a | 59.90 ± 5.98 a | |
3 | Control | 41.16 ± 0.28 a | 0.13 ± 0.00 b | 685.32 ± 10.16b | 164.45 ± 2.58 b | 69.56 ± 3.38 a |
MED | 41.11 ± 0.35 a | 0.23 ± 0.03 a | 823.70 ± 35.83 a | 214.67 ± 11.98 a | 69.09 ± 2.32 a | |
MEAM1 | 41.12 ± 0.13 a | 0.26 ± 0.01 a | 270.09 ± 14.68 c | 142.07 ± 2.16 c | 68.61 ± 12.20 a | |
4 | Control | 41.18 ± 0.22 a | 0.18 ± 0.01 b | 376.68 ± 39.20 a | 151.29 ±12.75 a | 69.11 ± 1.69 b |
MED | 41.08 ± 0.01 a | 0.22 ± 0.00 b | 309.58 ± 15.32 a | 121.97 ±4.46 b | 65.68 ± 0.78 c | |
MEAM1 | 41.29 ± 0.11 a | 0.31 ±0.03 a | 299.62 ± 65.53 a | 143.45 ±5.91 a | 72.60 ± 1.23 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima Toledo, C.A.; da Silva Ponce, F.; Oliveira, M.D.; Aires, E.S.; Seabra Júnior, S.; Lima, G.P.P.; de Oliveira, R.C. Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. Insects 2021, 12, 1105. https://doi.org/10.3390/insects12121105
de Lima Toledo CA, da Silva Ponce F, Oliveira MD, Aires ES, Seabra Júnior S, Lima GPP, de Oliveira RC. Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. Insects. 2021; 12(12):1105. https://doi.org/10.3390/insects12121105
Chicago/Turabian Stylede Lima Toledo, Claudia Aparecida, Franciely da Silva Ponce, Moisés Daniel Oliveira, Eduardo Santana Aires, Santino Seabra Júnior, Giuseppina Pace Pereira Lima, and Regiane Cristina de Oliveira. 2021. "Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1" Insects 12, no. 12: 1105. https://doi.org/10.3390/insects12121105
APA Stylede Lima Toledo, C. A., da Silva Ponce, F., Oliveira, M. D., Aires, E. S., Seabra Júnior, S., Lima, G. P. P., & de Oliveira, R. C. (2021). Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. Insects, 12(12), 1105. https://doi.org/10.3390/insects12121105