Special Issue "Selected Papers from the 9th EVI-GTI International Gas Turbine Instrumentation Conference"

A special issue of International Journal of Turbomachinery, Propulsion and Power (ISSN 2504-186X).

Deadline for manuscript submissions: closed (31 October 2020).

Special Issue Editors

Dr. Ralf Obertacke
Website
Guest Editor
Senior Key Expert for Testing & Validation at Siemens Energy and President of the European Virtual Institute for Gas Turbine Instrumentation, EVI-GTI
Interests: test cell and test facility design, emissions measurement, optical probes, public funding, EU contracts
Dr. Pete Loftus
Website
Guest Editor
Director Evalu8ion, Ltd. and Vice President of the European Virtual Institute for Gas Turbine Instrumentation, EVI-GTI
Interests: applied metrology and developing the next generation of measurement engineers
Dr. Hanspeter Zinn
Website
Guest Editor
General Electric (Switzerland) GmbH
Interests: gas turbine instrumentation
Dr. Michele Scervini
Website
Guest Editor
Univ of Cambridge
Interests: gas turbine instrumentations, thermocouples

Special Issue Information

Dear Colleagues,

The European Virtual Institute for Gas Turbine Instrumentation (EVI-GTI) was founded in 2002 through the European Union’s Competitive and Sustainable Growth (GROWTH) program. Since 2005, the EVI-GTI has been a non-profit association. The Board, the membership, and the attendees represent basically all European turbomachinery OEMs, a broad variety of sensor and instrumentation vendors and many universities and research institutes.

EVI-GTI has, together with the Propulsion Instrumentation Working Group (PIWG) in the U.S., developed the Instrumentation Lap Gap Matrix (LGM), by analyzing the technology readiness of various technologies for sensors, probes, and instrumentation. The LGM shows which technologies are currently satisfactory, which are currently not available but can be worked around, and which are not available today and prevent further development of gas turbine engines (e.g., to higher efficiencies.)

The EVI-GTI International Gas Turbine Instrumentation Conference is an event that arose in 2004, in the first years as a yearly conference in Europe. From 2006 on, it was organized every two years. Every other year, there is a transatlantic Joint EVI-GTI / PIWG Conference which takes place alternately in the U.S. and in Europe.

The 9th EVI-GTI International Gas Turbine Instrumentation Conference was held in Graz/Austria on 20-21 November 2019. The conference was structured into five sessions that covered topics related to instrumentation and measurement in (hot) engine parts. The sessions were:

  • Test cell concepts and instrumentation
  • New sensors and innovative measurement technologies
  • Engine measurements for performance evaluation
  • Artificial Intelligence (AI), machine learning and controls
  • Non-contact optical sensors

Besides the presentations and the key notes, “elevator pitch” sessions were held where the participants could introduce their work.
About 20 technical presentations were given, either full papers or “presentation only” contributions. The best papers from the conference, corresponding to the IJTPP scope, are collected in this Special Issue.

EVI-GTI Website: https://evi-gti.eu               EVI-GTI Wiki Site: https//wiki.evi-gti.eu

Dr. Ralf Obertacke
Dr. Pete Loftus
Dr. Hanspeter Zinn
Dr. Michele Scervini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Turbomachinery, Propulsion and Power is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • EVI-GTI
  • Gas turbine instrumentation
  • Sensors and instrumentation
  • Standards and specification
  • Test cells and test rigs
  • Engine measurement
  • Hot gas path
  • Wireless, energy harvesting
  • Gas turbine health monitoring and control

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
High-Temperature Profile Monitoring in Gas Turbine Exhaust-Gas Diffusors with Six-Point Fiber-Optic Sensor Array
Int. J. Turbomach. Propuls. Power 2020, 5(4), 25; https://doi.org/10.3390/ijtpp5040025 - 24 Sep 2020
Abstract
In this paper, the deployment of a newly developed, multipoint, fiber-optic temperature-sensor system for temperature distribution measurements in a 6 MW gas turbine is demonstrated. The optical sensor fiber was integrated in a stainless steel protection cable with a 1.6 mm outside diameter. [...] Read more.
In this paper, the deployment of a newly developed, multipoint, fiber-optic temperature-sensor system for temperature distribution measurements in a 6 MW gas turbine is demonstrated. The optical sensor fiber was integrated in a stainless steel protection cable with a 1.6 mm outside diameter. It included six measurement points, distributed over a length of 110 mm. The sensor cable was mounted in a temperature probe and was positioned radially in the exhaust-gas diffusor of the turbine. With this temperature probe, the radial temperature profiles in the exhaust-gas diffusor were measured with high spatial and temporal resolution. During a test run of the turbine, characteristic temperature gradients were observed when the machine operated at different loads. Full article
Show Figures

Figure 1

Open AccessArticle
TGSim Plus™—Real-Time Dynamic Simulation Suite of Gas Turbine Systems for the MATLAB®/Simulink® Environment
Int. J. Turbomach. Propuls. Power 2020, 5(3), 24; https://doi.org/10.3390/ijtpp5030024 - 11 Sep 2020
Abstract
Dynamic simulation of turbomachinery by Hardware in the Loop (HIL) real-time systems has become an essential practice, due to the high cost of real equipment testing and the need to verify the control and diagnostic systems’ reaction to emergency situations. The authors developed [...] Read more.
Dynamic simulation of turbomachinery by Hardware in the Loop (HIL) real-time systems has become an essential practice, due to the high cost of real equipment testing and the need to verify the control and diagnostic systems’ reaction to emergency situations. The authors developed a full model of a power generation Gas Turbine Plant, including liquid and gaseous auxiliaries, and the electrical generator and starter motor, integrated in a MATLAB®/Simulink® simulation suite: TGSim Plus™. This allows assembling models of various gas turbine (GT) architectures by customised Simulink® library blocks and simulating steady state and transient conditions, such as complete start-up and shutdown operations as well as emergency, contingent operations and artificially injected fault scenarios. The model solver runs real-time steps at milliseconds scale. The paper describes the main modelling characteristics and typical results of steady state and transient simulations of a heavy-duty gas turbine under development by Doosan Heavy Industries and Construction (Changwon, South Korea). Comparison with benchmark design simulations obtained by a reference non real-time software shows a good match between the two environments, duly taking into account some differences in the GT models setting affecting parts of the sequence. The paper discusses also the bleed streams warm-up influence on GT performance and the start-up states trajectories dependency on control logic and on the starter helper motor torque envelope. Full article
Show Figures

Figure 1

Open AccessArticle
Thermal Performance Evaluation in Gas Turbine Aero Engines Accessory Gearbox
Int. J. Turbomach. Propuls. Power 2020, 5(3), 21; https://doi.org/10.3390/ijtpp5030021 - 26 Aug 2020
Abstract
This paper presents a methodological approach for mathematical modelling and physics-based analysis of accessory gearbox (AGB) thermal behavior in gas turbine aero engines. The AGB structure, as one of the main sources of heat in gas turbine aero engines, is firstly described and [...] Read more.
This paper presents a methodological approach for mathematical modelling and physics-based analysis of accessory gearbox (AGB) thermal behavior in gas turbine aero engines. The AGB structure, as one of the main sources of heat in gas turbine aero engines, is firstly described and its power losses will be divided into load-dependent and no-load dependent parts. Different mechanisms of heat generation are then identified and formulated to develop a toolbox for calculation of the churning, sliding friction, and rolling friction losses between contact surfaces of the AGB. The developed tool is also capable of calculating the heat loss mechanisms in different elements of the AGB, such as gears, bearings, and seals. The generated model is used to simulate and analyze the AGB thermal performance in the different flight phases in a typical flight mission, where the obtained results are validated against publicly available data. The analysis of the results confirms the effectiveness of the proposed method to estimate the heat loss values in the AGBs of gas turbine aero engines and to predict the thermal loads of the AGB in different flight phases. The developed tool enables the gas turbine thermal management system designers to deal with the generated heats effectively and in an optimal way. Full article
Show Figures

Figure 1

Open AccessArticle
Combined Optic-Acoustic Monitoring of Combustion in a Gas Turbine
Int. J. Turbomach. Propuls. Power 2020, 5(3), 15; https://doi.org/10.3390/ijtpp5030015 - 06 Jul 2020
Abstract
The need for better combustion monitoring in gas turbines has become more acute with the latest technical requirements, standards, and policies in terms of safety, environment, efficiency, operation flexibility, and operation costs. Combustion Bay One e.U. and FH JOANNEUM GmbH initiated in 2015 [...] Read more.
The need for better combustion monitoring in gas turbines has become more acute with the latest technical requirements, standards, and policies in terms of safety, environment, efficiency, operation flexibility, and operation costs. Combustion Bay One e.U. and FH JOANNEUM GmbH initiated in 2015 an experimental research program about the feasibility and first assessments of placing optical systems near the combustor. The project’s acronym “emootion” stands for “Engine health MOnitOring and refined combusTION control based on optical diagnostic techniques embedded in the combustor”. The motivation of the project is twofold. On one side, one wants to exploit the radiative feature of the flame and to transform it into a piece of reliable information about the combustion status. On the other side, this information can be useful in terms of data interpretation or data reconciliation with other information coming from other sensors such as temperature probes, fast pressure probes, or accelerometers. The focus is put on several aspects of combustor operations: on detection of the flame, on monitoring of the ignition process, on a quality assessment of combustion based on its spectral contents (including soot formation), and on the detection of possible combustion instabilities. Promising results were obtained using photodiodes that offer an adequate trade-off between narrow-band sensitivity and signal time response. It is shown that it is convenient to combine a fast-pressure sensor with an optical sensor in a compact form; this combination has led to the so-called Rayleigh Criterion Probe (RCP). The split in red, green, and blue (RGB) light components and their further analysis allows for mapping the different types of operation. Regarding the probe packaging aspect, it is discussed that the level of light collection needed to keep an acceptable signal-to-noise ratio has been so far a restraint for the use of optical fibres. Solutions are proposed to bring the optical sensor as close as possible to the optical interface and to make it operational and reliable in prevailing heat. This contribution closes with a description of the pressure tests in a new combustion facility built for this purpose. A compact and portable combustion monitoring system including at least 3 RCPs can become an instrumentation standard within the next decade. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental and Numerical Analysis of Deformation in a Rotating RC Helicopter Blade
Int. J. Turbomach. Propuls. Power 2020, 5(3), 13; https://doi.org/10.3390/ijtpp5030013 - 02 Jul 2020
Abstract
Rotating structures are important and commonly used in the transportation and energy generation fields, where a better understanding of the deformations these structures endure is essential for both the design and maintenance phases. This work presents a novel image sensing methodology for measuring [...] Read more.
Rotating structures are important and commonly used in the transportation and energy generation fields, where a better understanding of the deformations these structures endure is essential for both the design and maintenance phases. This work presents a novel image sensing methodology for measuring the displacements of rotating parts in operation due to dynamic loading. This methodology employs 3D digital image correlation combined with a custom stroboscopic lighting solution to achieve apparent stillness of the target while it rotates and then processes the acquired data to remove small imprecisions and align it to the rotor’s intrinsic coordinate system. It was applied to an RC helicopter, whose blade deformation was measured and compared with a computational model, using fluid–structure interaction between computational fluid dynamics (CFD) and finite element analysis (FEA). Using live measurement techniques, it was possible to obtain the actual behaviour of the blades, which can be used to validate and tune computational models. The proposed methodology complements the methods available in the literature, which were centred around relative out-of-plane displacements, by enabling the comparison of absolute out-of-plane and in-plane ones. Full article
Show Figures

Figure 1

Open AccessArticle
Pulsation and Vibration Measurement on Stator Side for Turbocharger Turbine Blade Vibration Monitoring
Int. J. Turbomach. Propuls. Power 2020, 5(2), 11; https://doi.org/10.3390/ijtpp5020011 - 25 May 2020
Abstract
Mechanically robust turbine design with respect to blade vibration is challenging when dealing with nozzle-ring fouling and wear. Especially for engines operating with heavy fuel oil (HFO), the nozzle rings of the turbocharger turbines are prone to severe degradation in terms of contamination [...] Read more.
Mechanically robust turbine design with respect to blade vibration is challenging when dealing with nozzle-ring fouling and wear. Especially for engines operating with heavy fuel oil (HFO), the nozzle rings of the turbocharger turbines are prone to severe degradation in terms of contamination with unburned fuel deposits. This contamination will lead to an increased excitation of blade resonances in comparison to the nominal design. Due to the statistical character of contamination, long-term monitoring of blade vibration amplitudes would be beneficial. In the harsh environment of HFO operation, however, conventional blade vibration measurement techniques, such as those using strain gauges or blade tip timing, cannot work reliably for a long period. Thus, the objective of this research is to develop a method that enables the monitoring of turbine blades using pulsation or vibration sensors installed on the stator side. Almost a dozen turbines, both radial and axial, have been examined in order to determine a proper measurement chain/position and analytical method. Even though the challenges specific to the turbocharger turbine application—that high-frequency (up to 50 kHz) acoustic radiation from turbine blades has to be detected by a sensor on the stator side—were demanding, in the course of the investigations several clear examples of turbine blades engine-order resonance detection were gathered. Finally, the proposed method has been tested successfully in a power plant for over one year. Full article
Show Figures

Figure 1

Open AccessArticle
Forcing Pulsations by Means of a Siren for Gas Turbine Applications
Int. J. Turbomach. Propuls. Power 2020, 5(2), 9; https://doi.org/10.3390/ijtpp5020009 - 13 May 2020
Cited by 1
Abstract
A siren is a robust fast-valve that generates effective flow pulsations and powerful noise levels under well-controlled conditions. It operates under the inlet flow conditions of a gas turbine combustor. Its principle is based on a sonic air jet periodically sheared by a [...] Read more.
A siren is a robust fast-valve that generates effective flow pulsations and powerful noise levels under well-controlled conditions. It operates under the inlet flow conditions of a gas turbine combustor. Its principle is based on a sonic air jet periodically sheared by a cogged wheel rotating at a given speed. It is used as an alternative to loudspeakers in combustion laboratories when the use of these is made difficult by aggressive flow conditions, such as hot air under pressure, possibly containing impurities. It is also a serious candidate as an effective flow actuator to be deployed on power gas turbine fleets. The authors have gathered more than twenty years of knowledge on siren technology. This pulsator was originally developed for research on thermoacoustics. By scanning through a given frequency range, one detects the acoustic resonance of specific parts of the combustor assembly, or possibly triggers a combustion instability during a sensitivity analysis of a flame to small perturbations. In 2010, Giuliani et al. developed a novel siren model with the capacity to vary the amplitude of pulsation independently from the frequency. In this contribution, the physics, the metrics, and the resulting parameters of the pulsator are discussed. Technical solutions are unveiled about visiting large frequency ranges (currently 6 kHz) and achieving elevated pressure fluctuations (150 dB SPL proven, possibly up to 155 dB SPL) with a compact device. A multimodal excitation is available with this technology, one idea being to dissipate the acoustic energy on nearby peaks. The contribution ends with a summary of the applications performed so far and the perspective of an industrial application. Full article
Show Figures

Figure 1

Back to TopTop