ijms-logo

Journal Browser

Journal Browser

Special Issue "Advanced Polymer Composite Materials"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: 31 May 2020.

Special Issue Editors

Prof. Dr. Xiao Hu
E-Mail Website
Guest Editor
Department of Physics and Astronomy, Department of Biomedical Engineering, Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
Interests: polymer; biomaterials; biomacromolecules; regenerative medicine; drug delivery; nanotechnology
Special Issues and Collections in MDPI journals
Prof. Dr. Francesco Trotta
E-Mail Website
Co-Guest Editor
Department of Chemistry, University of Turin, 10125 Turin, Italy
Tel. +39 011 6707550; Fax: +39 011 6707855
Interests: cyclodextrins; cyclodextrin nanosponges; drug delivery; molecularly-imprinted polymers; membranes
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

A polymer composite is a material system composed of two or more macro/micro/nano constituents of different shapes, properties or chemical compositions, at least one of which is a polymer. The design of multifunctional and tunable polymer-based composite materials is an emerging area of research with a wide range of applications in the aerospace industry, the automotive industry, the home appliance industry, the sporting goods industry, as well as the booming biomedical device/biomaterial industry. Polymer composite materials can be classified according to matrix materials (synthetic polymers, biopolymers, inorganic and organic fillers, etc.) and reinforcement geometries (particles, fibers, gels, films, layers, foams, mixtures, etc.). In addition, the polymer composite can be a multiphase material with a significant proportion of each phase or a blended material system with a continuous phase that greatly enhances the physical, chemical or biological properties of the material matrix. By optimizing molecular interfaces between different components, polymer-based composite materials can also encompass a range of functions, such as thermal stability at different temperatures, elasticity to support diverse structures, electrical sensitivity in variable sensors, and optical properties for advanced fiberglass technology. In this Special Issue, we will highlight the latest developments in these advanced polymer composite materials, including their design, synthesis, characterization, manufacturing, and modeling, as well as their various applications. Both research and review articles are welcome.

Prof. Dr. Xiao Hu
Prof. Dr. Francesco Trotta
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Composite materials
  • Polymer and biopolymer
  • Physical and chemical properties
  • Composite design, characterization, structure, and function

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Designing Microparticle-Impregnated Polyelectrolyte Composite: The Combination of ATRP, Fast Azidation, and Click Reaction Using a Single-Catalyst, Single-Pot Strategy
Int. J. Mol. Sci. 2019, 20(22), 5582; https://doi.org/10.3390/ijms20225582 - 08 Nov 2019
Abstract
Polystyrene microparticles were covalently impregnated into the networks of functional polyelectrolyte chains designed via a tandem run of three reactions: (i) synthesis of water-soluble polyelectrolyte, (ii) fast azidation and (iii) a ‘click’ reaction, using the single-catalyst, single-pot strategy at room temperature in mild [...] Read more.
Polystyrene microparticles were covalently impregnated into the networks of functional polyelectrolyte chains designed via a tandem run of three reactions: (i) synthesis of water-soluble polyelectrolyte, (ii) fast azidation and (iii) a ‘click’ reaction, using the single-catalyst, single-pot strategy at room temperature in mild aqueous media. The model polyelectrolyte sodium polystyrenesulfonate (NaPSS) was synthesized via the well-controlled atom transfer radical polymerization (ATRP) whose halogen living-end was transformed to azide and subsequently coupled with an alkyne carboxylic acid through a ‘click’ reaction using the same ATRP catalyst, throughout. Halogen to azide transformation was fast and followed the radical pathway, which was explained through a plausible mechanism. Finally, the success of microparticle impregnation into the NaPSS network was evaluated through Kaiser assay and imaging. This versatile synthetic procedure, having a reduced number of discrete reaction steps and eliminated intermediate work-ups, has established a fast and simple pathway to design functional polymers required to fabricate stable polymer-particle composites where the particles are impregnated covalently and controllably. Full article
(This article belongs to the Special Issue Advanced Polymer Composite Materials)
Show Figures

Graphical abstract

Open AccessArticle
Fabrication of Surfactant-Dispersed HiPco Single-Walled Carbon Nanotube-Based Alginate Hydrogel Composites as Cellular Products
Int. J. Mol. Sci. 2019, 20(19), 4802; https://doi.org/10.3390/ijms20194802 - 27 Sep 2019
Cited by 1
Abstract
In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and [...] Read more.
In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant composite’s efficiency and effectiveness towards cell-therapy. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic)-were utilized. After mixing of the SWCNT-surfactant with alginate, the mixtures were cross-linked using divalent calcium ions and characterized using Raman spectroscopy. Rheometric analysis showed an increase in complex viscosity, loss, and storage moduli of the SWCNT composite gels in comparison with pure alginate gels. Scanning electron microscopy revealed the presence of a well-distributed porous structure, and all SWCNT-gel composites depicted enhanced electrical conductivity with respect to alginate gels. To characterize their biocompatibility, cardiomyocytes were cultured atop these SWCNT-gels. Results comprehensively implied that Pluronic F108 was most efficient in preventing agglomeration of the SWCNTs in the alginate matrix, leading to a stable scaffold formation without posing any toxicity to the cells. Full article
(This article belongs to the Special Issue Advanced Polymer Composite Materials)
Show Figures

Graphical abstract

Back to TopTop