ijms-logo

Journal Browser

Journal Browser

Cellular and Molecular Mechanisms of Heavy Metal Toxicity: From Death to Immortality

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Toxicology".

Deadline for manuscript submissions: closed (28 February 2023) | Viewed by 31821

Special Issue Editor


E-Mail Website
Guest Editor
AG 9 Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
Interests: metal toxicity; metal carcinogenesis; sphingolipids; cancer drug resistance; kidney

Special Issue Information

Dear Colleagues,

The prevalence of toxic heavy metals, such as arsenic, cadmium, chromium, lead and mercury, in the environment poses increasing concern for human health following exposure via inhalation or ingestion. Once in the body, the metals are distributed in the bloodstream, reaching most organs where they can be taken up by cells using existing transport systems in a form of molecular mimicry. Chronic exposures result in cellular accumulation of heavy metals and once a protective threshold has been exceeded, stress, defense and adaptive responses are initiated.

Pivotal to the cellular response to heavy metal toxicity are reactive oxygen species (ROS), which lead to DNA damage, lipid peroxidation, alteration of signaling and transport proteins or modulation of enzyme activities. Heavy metals may alter the cellular redox status by increasing ROS generation or damaging ROS-scavenging defenses, both resulting in elevated ROS levels, and impacting physiological ROS signaling as well as downstream signaling pathways involved in cellular life and death decisions.

In this context for this Special Issue, investigators and experts in the field are invited to submit high quality original articles reporting novel findings regarding molecular and cellular mechanisms of heavy metals (single or mixtures) or review articles summarizing the status-quo and postulating updated and stimulating hypotheses.

Prof. Dr. Wing Kee Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxidative stress
  • cell death
  • carcinogenesis
  • mutations
  • toxicology
  • molecular mimicry
  • signal transduction
  • redox status

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 3275 KiB  
Article
Arsenite Impairs BRCA1-Dependent DNA Double-Strand Break Repair, a Mechanism Potentially Contributing to Genomic Instability
by Tizia Matthäus, Sandra Stößer, Hatice Yasemin Seren, Vivien M. M. Haberland and Andrea Hartwig
Int. J. Mol. Sci. 2023, 24(18), 14395; https://doi.org/10.3390/ijms241814395 - 21 Sep 2023
Viewed by 1568
Abstract
BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic [...] Read more.
BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic arsenic, which is indirectly genotoxic via induction of oxidative stress and inhibition of DNA repair pathways. In the present study, we investigated the effect of NaAsO2 on the transcriptional and functional DDR. Particular attention was paid to the potential impairment of BRCA1-mediated DDR mechanisms by arsenite by comparing BRCA1-deficient and -proficient cells. At the transcriptional level, arsenite itself activated several DDR mechanisms, including a pronounced oxidative stress and DNA damage response, mostly independent of BRCA1 status. However, at the functional level, a clear BRCA1 dependency was observed in both cell cycle regulation and cell death mechanisms after arsenite exposure. Furthermore, in the absence of arsenite, the lack of functional BRCA1 impaired the largely error-free homologous recombination (HR), leading to a shift towards the error-prone non-homologous end-joining (NHEJ). Arsenic treatment also induced this shift in BRCA1-proficient cells, indicating BRCA1 inactivation. Although BRCA1 bound to DNA DSBs induced via ionizing radiation, its dissociation was impaired, similarly to the downstream proteins RAD51 and RAD54. A shift from HR to NHEJ by arsenite was further supported by corresponding reporter gene assays. Taken together, arsenite appears to negatively affect HR via functional inactivation of BRCA1, possibly by interacting with its RING finger structure, which may compromise genomic stability. Full article
Show Figures

Figure 1

18 pages, 2568 KiB  
Article
Impact of Manganese and Chromate on Specific DNA Double-Strand Break Repair Pathways
by Vivien M. M. Haberland, Simon Magin, George Iliakis and Andrea Hartwig
Int. J. Mol. Sci. 2023, 24(12), 10392; https://doi.org/10.3390/ijms241210392 - 20 Jun 2023
Cited by 7 | Viewed by 1893
Abstract
Manganese is an essential trace element; nevertheless, on conditions of overload, it becomes toxic, with neurotoxicity being the main concern. Chromate is a well-known human carcinogen. The underlying mechanisms seem to be oxidative stress as well as direct DNA damage in the case [...] Read more.
Manganese is an essential trace element; nevertheless, on conditions of overload, it becomes toxic, with neurotoxicity being the main concern. Chromate is a well-known human carcinogen. The underlying mechanisms seem to be oxidative stress as well as direct DNA damage in the case of chromate, but also interactions with DNA repair systems in both cases. However, the impact of manganese and chromate on DNA double-strand break (DSB) repair pathways is largely unknown. In the present study, we examined the induction of DSB as well as the effect on specific DNA DSB repair mechanisms, namely homologous recombination (HR), non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ). We applied DSB repair pathway-specific reporter cell lines, pulsed field gel electrophoresis as well as gene expression analysis, and investigated the binding of specific DNA repair proteins via immunoflourescence. While manganese did not seem to induce DNA DSB and had no impact on NHEJ and MMEJ, HR and SSA were inhibited. In the case of chromate, the induction of DSB was further supported. Regarding DSB repair, no inhibition was seen in the case of NHEJ and SSA, but HR was diminished and MMEJ was activated in a pronounced manner. The results indicate a specific inhibition of error-free HR by manganese and chromate, with a shift towards error-prone DSB repair mechanisms in both cases. These observations suggest the induction of genomic instability and may explain the microsatellite instability involved in chromate-induced carcinogenicity. Full article
Show Figures

Figure 1

16 pages, 6029 KiB  
Article
Regulation of Vicia faba L. Response and Its Effect on Megoura crassicauda Reproduction under Zinc Stress
by Si-Jing Wan, Hui-Ru Si, Xian-Zhong Wang, Lei Chao, Wu Ma, Si-Si Sun, Bin Tang, Xiao-Ling Tan and Shigui Wang
Int. J. Mol. Sci. 2023, 24(11), 9659; https://doi.org/10.3390/ijms24119659 - 2 Jun 2023
Cited by 6 | Viewed by 1646
Abstract
The heavy metal zinc (Zn) is known to be transmitted in the food chain; however, the effect of Zn stress on beans and herbivorous insects is largely unclear. This study aimed to investigate the resistance of broad bean plants to Zn stress and [...] Read more.
The heavy metal zinc (Zn) is known to be transmitted in the food chain; however, the effect of Zn stress on beans and herbivorous insects is largely unclear. This study aimed to investigate the resistance of broad bean plants to Zn stress and the consequent changes in their physiological and biochemical metabolism by simulating heavy metal pollution in soil. Simultaneously, the effects of aphid progeny treated with different Zn concentrations on the expression of carbohydrate and related genes were analyzed. The results showed that Zn had no effect on the germination rate of broad beans, but other effects mainly manifested as follows. (1) Chlorophyll content decreased. (2) The total soluble sugar and Zn content in stems and leaves increased with increasing Zn content. (3) The proline content first increased and then decreased with increasing Zn content. (4) The height of the seedlings indicates that low concentrations promote growth and high concentrations inhibit growth. In addition, only the first-generation fecundity decreased significantly when aphids fed on heavy metal broad beans. Continuous high Zn levels increase the trehalose content of aphid F1 and F2, while F3 decreases. These results can not only provide a theoretical basis for exploring the impact of soil heavy metal pollution on ecosystems but also preliminarily evaluate the possibility of broad beans as a means of pollution remediation. Full article
Show Figures

Graphical abstract

17 pages, 7722 KiB  
Article
Impact of Intratracheal Administration of Polyethylene Glycol-Coated Silver Nanoparticles on the Heart of Normotensive and Hypertensive Mice
by Abderrahim Nemmar, Suhail Al-Salam, Yaser E. Greish, Sumaya Beegam, Nur E. Zaaba and Badreldin H. Ali
Int. J. Mol. Sci. 2023, 24(10), 8890; https://doi.org/10.3390/ijms24108890 - 17 May 2023
Cited by 7 | Viewed by 1962
Abstract
Silver nanoparticles are widely used in various industrial and biomedical applications; however, little is known about their potential cardiotoxicity after pulmonary exposure, particularly in hypertensive subjects. We assessed the cardiotoxicity of polyethylene glycol (PEG)-coated AgNPs in hypertensive (HT) mice. Saline (control) or PEG–AgNPs [...] Read more.
Silver nanoparticles are widely used in various industrial and biomedical applications; however, little is known about their potential cardiotoxicity after pulmonary exposure, particularly in hypertensive subjects. We assessed the cardiotoxicity of polyethylene glycol (PEG)-coated AgNPs in hypertensive (HT) mice. Saline (control) or PEG–AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times (on days 7, 14, 21, and 28 post-angiotensin II or vehicle [saline] infusion). On day 29, various cardiovascular parameters were evaluated. Systolic blood pressure and heart rate were higher in PEG–AgNPs-treated HT mice than in saline-treated HT or PEG–AgNPs-treated normotensive mice. The heart histology of PEG–AgNPs-treated HT mice had comparatively larger cardiomyocyte damage with fibrosis and inflammatory cells when compared with saline-treated HT mice. Similarly, the relative heart weight and the activities of lactate dehydrogenase and creatine kinase-MB and the concentration of brain natriuretic peptide concentration were significantly augmented in heart homogenates of HT mice treated with PEG–AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG–AgNPs. Similarly, the concentrations of endothelin-1, P-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in heart homogenates were significantly higher than in the other two groups when HT mice were exposed to PEG–AgNPs. Markers of inflammation and oxidative and nitrosative stress were significantly elevated in heart homogenates of HT mice given PEG–AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG–AgNPs. The hearts of HT mice exposed to PEG–AgNPs had significantly increased DNA damage than those of HT mice treated with saline or normotensive mice treated with AgNPs. In conclusion, the cardiac injury caused by PEG–AgNPs was aggravated in hypertensive mice. The cardiotoxicity of PEG–AgNPs in HT mice highlights the importance of an in-depth assessment of their toxicity before using them in clinical settings, particularly in patients with pre-existing cardiovascular diseases. Full article
Show Figures

Figure 1

17 pages, 1734 KiB  
Article
Lipid Structure Determines the Differential Impact of Single Metal Additions and Binary Mixtures of Manganese, Calcium and Magnesium on Membrane Fluidity and Liposome Size
by Kevin Sule, Max Anikovskiy and Elmar J. Prenner
Int. J. Mol. Sci. 2023, 24(2), 1066; https://doi.org/10.3390/ijms24021066 - 5 Jan 2023
Cited by 7 | Viewed by 1795
Abstract
Unilamellar vesicles of the biologically relevant lipids phosphatidic acid (PA) and phosphatidylserine (PS) with fully saturated (DM-) or partly unsaturated (PO-) acyl side chains were exposed to Ca, Mn and Mg in single metal additions; in equimolar mixtures or by sequential additions of [...] Read more.
Unilamellar vesicles of the biologically relevant lipids phosphatidic acid (PA) and phosphatidylserine (PS) with fully saturated (DM-) or partly unsaturated (PO-) acyl side chains were exposed to Ca, Mn and Mg in single metal additions; in equimolar mixtures or by sequential additions of one metal at a time. Laurdan generalized polarization measured the membrane fluidity, while dynamic light scattering reported liposome size changes complemented by zeta potential. All metals induced membrane rigidity and increased liposome sizes across all systems. Mn had the strongest effect overall, but Mg was comparable for DMPS. Lipid side chain architecture was important as GP values for binary mixtures were higher than expected from the sum of values for single additions added to POPS but smaller for DMPS. Sequential additions were predominantly different for Ca:Mg mixtures. Mn induced the strongest increase of liposome size in saturated lipids whereas Ca effects dominated unsaturated matrices. Binary additions induced larger sizes than the sum of single additions for POPS, but much lower changes in DMPA. The order of addition was relevant for PS systems. Thus, lipid structure determines metal effects, but their impact is modulated by other ions. Thus, metal effects may differ with the local lipid architecture and metal concentrations within cells. Full article
Show Figures

Graphical abstract

19 pages, 3132 KiB  
Article
Exacerbation of Cisplatin Cellular Toxicity by Regulation of the Human Organic Cation Transporter 2 through Angiotensin II
by Marta Kantauskaite, Anna Hucke, Beatrice Snieder and Giuliano Ciarimboli
Int. J. Mol. Sci. 2022, 23(24), 15866; https://doi.org/10.3390/ijms232415866 - 14 Dec 2022
Cited by 3 | Viewed by 1905
Abstract
Cisplatin (CDDP) is an efficient chemotherapeutic drug, whose use is associated with the development of serious undesired toxicities, such as nephrotoxicity. The human organic cation transporter 2 (hOCT2), which is highly expressed in the basolateral membrane domain of renal proximal tubules seems to [...] Read more.
Cisplatin (CDDP) is an efficient chemotherapeutic drug, whose use is associated with the development of serious undesired toxicities, such as nephrotoxicity. The human organic cation transporter 2 (hOCT2), which is highly expressed in the basolateral membrane domain of renal proximal tubules seems to play an important role in the development of CDDP nephrotoxicity. The role of angiotensin II (AII) signaling by binding to the AII receptor type 1 (AT1R) in the development and/or progression of CDDP nephrotoxicity is debated. Therefore, in this work, the regulation of hOCT2 activity by AII and its role in the development of CDDP cellular toxicity was investigated. To do this, hOCT2 was overexpressed by viral transduction in Madin–Darby Canine Kidney (MDCK) cells which were cultivated on a filter. This approach allows the separation of an apical and a basolateral membrane domain, which are easily accessible for experimentation. In this system, hOCT2 was mainly localized on the basolateral plasma membrane domain of the cells. The transporter was functional since a specific uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) with an affinity (Km) of 35 µM was only detectable by the addition of ASP+ to the basolateral compartment of hOCT2 expressing MDCK (hOCT2-MDCK) cells. Similarly, CDDP toxicity was evident mainly by CDDP addition to the basolateral compartment of hOCT2-MDCK cells cultivated on a filter. The addition of 1 nM AII stimulated hOCT2 function via PKC activation and worsened CDDP cytotoxicity via binding to AT1R. Therefore, the AII signaling pathway may be implicated in the development and/or progression of CDDP nephrotoxicity. This signaling pathway may be a target for protective interventions for example by blocking AT1R in the kidneys. However, it should be further investigated whether these findings obtained in a cell culture system may have translational relevance for the clinical situation. For toxicity experiments, a 100 µM CDDP concentration was used, which is high but allows us to identify clearly toxic effects due to hOCT2. In summary, down-regulation of hOCT2 activity by the inhibition of the AII signaling pathway may protect against CDDP nephrotoxicity. Full article
Show Figures

Figure 1

17 pages, 34241 KiB  
Article
Global Proteomic Profile of Aluminum-Induced Hippocampal Impairments in Rats: Are Low Doses of Aluminum Really Safe?
by Leonardo Oliveira Bittencourt, Rakhel Dayanne Damasceno-Silva, Walessa Alana Bragança Aragão, Luciana Eiró-Quirino, Ana Carolina Alves Oliveira, Rafael Monteiro Fernandes, Marco Aurelio M. Freire, Sabrina Carvalho Cartágenes, Aline Dionizio, Marília Afonso Rabelo Buzalaf, Juliana Silva Cassoli, Ana Cirovic, Aleksandar Cirovic, Cristiane do Socorro Ferraz Maia and Rafael Rodrigues Lima
Int. J. Mol. Sci. 2022, 23(20), 12523; https://doi.org/10.3390/ijms232012523 - 19 Oct 2022
Cited by 10 | Viewed by 3097
Abstract
Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic [...] Read more.
Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 1416 KiB  
Review
The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity
by Yonggang Ma, Qunchao Su, Chengguang Yue, Hui Zou, Jiaqiao Zhu, Hongyan Zhao, Ruilong Song and Zongping Liu
Int. J. Mol. Sci. 2022, 23(21), 13491; https://doi.org/10.3390/ijms232113491 - 4 Nov 2022
Cited by 60 | Viewed by 6105
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative [...] Read more.
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity. Full article
Show Figures

Figure 1

13 pages, 326 KiB  
Review
Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury
by Rolf Teschke
Int. J. Mol. Sci. 2022, 23(20), 12213; https://doi.org/10.3390/ijms232012213 - 13 Oct 2022
Cited by 60 | Viewed by 7947
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, [...] Read more.
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration. Full article
14 pages, 615 KiB  
Review
The Epitranscriptomic Mechanism of Metal Toxicity and Carcinogenesis
by Chengfeng Yang and Zhishan Wang
Int. J. Mol. Sci. 2022, 23(19), 11830; https://doi.org/10.3390/ijms231911830 - 5 Oct 2022
Cited by 16 | Viewed by 2411
Abstract
Metals are common toxic environmental pollutants. Acute or chronic exposure to metal pollutants causes severe adverse health effects in animals and humans, such as developmental retardation, abnormal metabolism, and disorders of cardiovascular, neurologic, respiratory, reproductive, and urologic systems. Moreover, several metals (arsenic, cadmium, [...] Read more.
Metals are common toxic environmental pollutants. Acute or chronic exposure to metal pollutants causes severe adverse health effects in animals and humans, such as developmental retardation, abnormal metabolism, and disorders of cardiovascular, neurologic, respiratory, reproductive, and urologic systems. Moreover, several metals (arsenic, cadmium, chromium, and nickel) are classified as potent Group I carcinogens and cause various types of cancer in humans. Although the toxicity and carcinogenicity of metal pollutants are well recognized, the underlying mechanisms have not been clearly defined. The epitranscriptome includes all kinds of chemical modifications of all forms of RNA molecules inside a cell. Recent progresses in demonstrating the reversible pattern of RNA modifications and their roles in physiology and pathogenesis represent a breakthrough in the field of RNA biology and function study. The epitranscriptomic study is now an exciting emerging field in toxicology research. While few studies have been conducted so far to determine the epitranscriptomic effects of metal pollutants, they offer novel insights for understanding the mechanisms of metal toxicity and carcinogenesis. The goal of this review is to discuss recent studies on the epitranscriptomic effects of metals and propose some thoughts for future studies in the field. Full article
Show Figures

Figure 1

Back to TopTop