ijms-logo

Journal Browser

Journal Browser

Bioactive Compounds from Natural Products for the Prevention and Treatment of Chronic Diseases, 3rd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2254

Special Issue Editor

Special Issue Information

Dear Colleagues,

Natural products may be the oldest form of medicine in human history. In particular, the types of medicine and functional foods using natural compounds are increasing. The aging of society due to the extension of life expectancy is one of the reasons treatments using natural compounds are receiving attention. As the elderly population increases, the number of patients with chronic and degenerative diseases does as well. These diseases have a high risk of side effects due to the nature of taking medicine for extended periods. Therefore, the relatively high safety and low side effects of natural products are very advantageous in the treatment of chronic diseases in this aging society. For these reasons, this Special Issue aims to identify bioactive compounds from natural products for the prevention and treatment of chronic diseases through signaling pathways in vitro or in vivo. We invite you to contribute your current work to this Special Issue as original research articles, review articles, and short communications.

Dr. Dong-Sung Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • natural products isolation
  • bioactive natural compounds
  • inflammation
  • neurodegenerative diseases
  • skin diseases
  • cancer
  • metabolic syndrome
  • chronic diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2633 KiB  
Article
The Impact of a Quinone Scaffold on Thermo-TRPs Modulation by Dimethylheptyl Phytocannabinoids
by Aniello Schiano Moriello, Aurora Bossoni, Daiana Mattoteia, Diego Caprioglio, Alberto Minassi, Giovanni Appendino, Luciano De Petrocellis, Pietro Amodeo and Rosa Maria Vitale
Int. J. Mol. Sci. 2025, 26(6), 2682; https://doi.org/10.3390/ijms26062682 - 17 Mar 2025
Viewed by 389
Abstract
Phytocannabinoids (pCBs) from Cannabis sativa represent an important class of bioactive molecules, potentially useful for the treatment of a wide range of diseases. Their efficacy is due to their ability to interact with multiple targets of the endocannabinoid system, including the thermosensitive transient [...] Read more.
Phytocannabinoids (pCBs) from Cannabis sativa represent an important class of bioactive molecules, potentially useful for the treatment of a wide range of diseases. Their efficacy is due to their ability to interact with multiple targets of the endocannabinoid system, including the thermosensitive transient receptor potential (Thermo-TRPs), namely TRPV1-4, TRPA1, and TRPM8 channels. Previously, we demonstrated a shift in selectivity toward TRPA1 in the activity profile of the main pCBs, that is, CBD, ∆8-THC, CBG, CBC, and CBN, by swapping the pentyl chain with the α,α-dimethylheptyl (DMH) one. Using these derivatives as a starting point, here we investigate the effects on the thermo-TRPs activity profile of the integration of a quinone group into the resorcinol scaffold. We found that, while the activity on TRPA1 is substantially retained, an increase in potency/efficacy on the TRPV3 modulation is observed. Docking studies were used to elucidate the binding modes of the most active compounds toward this receptor, providing a rationale for this biological activity. In summary, we show that the quinone derivatives of DMH-pCBs are endowed with a TRPA1/TRPV3 desensitizing activity, potentially useful for the treatment of skin diseases sustained by inflammatory conditions. Full article
Show Figures

Figure 1

13 pages, 10432 KiB  
Article
Immunostimulatory Activity of a Mixture of Platycodon grandiflorum, Pyrus serotine, Chaenomeles sinensis, and Raphanus sativus in RAW264.7 Macrophages
by Weerawan Rod-in, Minji Kim, A-yeong Jang, Yu Suk Nam, Tae Young Yoo and Woo Jung Park
Int. J. Mol. Sci. 2024, 25(19), 10660; https://doi.org/10.3390/ijms251910660 - 3 Oct 2024
Viewed by 1253
Abstract
In this study, a mixture of Platycodon grandiflorum, Pyrus serotina, Chaenomeles sinensis, and Raphanus sativus (PPCRE) was investigated for their immuno-enhancing effects, as well as the molecular mechanism of PPCRE in RAW264.7 cells. PPCRE dramatically increased nitric oxide (NO) and [...] Read more.
In this study, a mixture of Platycodon grandiflorum, Pyrus serotina, Chaenomeles sinensis, and Raphanus sativus (PPCRE) was investigated for their immuno-enhancing effects, as well as the molecular mechanism of PPCRE in RAW264.7 cells. PPCRE dramatically increased nitric oxide (NO) and prostaglandin E2 (PGE2) generation depending on the concentration while exhibiting no cytotoxicity. PPCRE markedly upregulated the mRNA and protein expression of immune-related cytotoxic factors such as cyclooxygenase (COX)-1, COX-2, and inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), as well as the mRNA level of IL-4. PPCRE increased the mitogen-activated protein kinase (MAPK) signaling pathway by upregulating the phosphorylation of extracellular signal-regulated kinase (ERK), stress-activated protein kinase/Jun N-terminal-kinase (SAPK/JNK), and p38. Furthermore, PPCRE considerably activated the nuclear factor kappa B (NF-κB) signaling pathway by increasing phosphorylation of NF-κB-p65. PPCRE-stimulated RAW264.7 cells increased macrophage phagocytic capacity. In conclusion, our study found that PPCRE improved immune function by modulating inflammatory mediators and regulating the MAPK and NF-κB pathway of signaling in macrophages. Full article
Show Figures

Figure 1

Back to TopTop