ijms-logo

Journal Browser

Journal Browser

Plant Bioactive Compounds: Antioxidant, Anti-inflammatory and Anticancer Effects

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (20 May 2025) | Viewed by 6427

Special Issue Editor


E-Mail Website
Guest Editor
Department of Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, 310330 Arad, Romania
Interests: phytochemicals; health, analytical, and natural product chemistry; peptides and proteins; drug discovery; drug delivery systems; synthesis/green synthesis of biologically active molecules and nanoparticles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant-derived bioactive compounds serve as crucial components for pharmaceuticals, nutritional products, and traditional medicine. Understanding the intricate molecular processes associated with the health-promoting properties of these diverse bioactive compounds is essential for developing targeted products.

This particular Special Issue is dedicated to recent research that explores the acquisition, identification, and utilization of bioactive compounds. The primary focus is on elucidating the molecular mechanisms and cellular pathways implicated in conditions such as metabolic diseases, skin disorders, cancer, and more. Contributions that furnish insights into the molecular targets of these compounds, their impact at the cellular, organ, and organism levels, and their modulation of various cellular pathways and functions are highly encouraged.

The objective of this Special Issue is to unravel the molecular foundations underlying the incorporation of phytochemicals in pharmaceuticals and nutraceuticals, as well as in the development of new drugs. The scope spans from laboratory research to preclinical applications, emphasizing a comprehensive understanding of the molecular basis for these compounds in promoting human health.

IJMS focuses on molecular studies in biology and chemistry, with a strong emphasis on molecular biology and molecular medicine.

Substances without clear ingredients, such as complex prescriptions, crude extracts, and herbal mixtures, are not considered.

Papers that only contain clinical trials/data are not acceptable for publication in IJMS.

Prof. Dr. Dana Maria Copolovici
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anticancer
  • antioxidant
  • anti-inflammatory
  • bioactive compounds
  • chemical biology
  • molecular biology
  • metabolic diseases
  • nutrition.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2840 KB  
Article
Cannabis sativa Root Extract Exerts Anti-Nociceptive and Anti-Inflammatory Effects via Endocannabinoid Pathway Modulation In Vivo and In Vitro
by Seo-Yul Jang, Hye-Lin Jin, Ga-Ram Yu, Dong-Woo Lim and Won-Hwan Park
Int. J. Mol. Sci. 2025, 26(18), 8863; https://doi.org/10.3390/ijms26188863 - 11 Sep 2025
Viewed by 748
Abstract
Cannabis sativa root has traditionally been used to relieve pain and inflammation, but its pharmacological properties remain underexplored due to low levels of psychoactive cannabinoids. This study aimed to investigate the anti-inflammatory and antinociceptive effects of the ethyl acetate fraction of Cannabis sativa [...] Read more.
Cannabis sativa root has traditionally been used to relieve pain and inflammation, but its pharmacological properties remain underexplored due to low levels of psychoactive cannabinoids. This study aimed to investigate the anti-inflammatory and antinociceptive effects of the ethyl acetate fraction of Cannabis sativa root (CSREA) using in vivo rodent pain models. Mice were subjected to formalin and acetic acid-induced nociceptive tests, while rats were evaluated using a carrageenan-induced paw edema model. CSREA significantly reduced pain-related behaviors in both early (0–10 min) and late phases (15–30 min) of the formalin test and decreased writhing responses in the acetic acid model. Notably, CSREA also improved survival rates following acetic acid injection. Inflammatory markers, including IL-6 and IL-1β, were significantly lowered in serum. Furthermore, CSREA suppressed paw edema and redness in the carrageenan-induced rat model, demonstrating dose-dependent anti-inflammatory efficacy comparable to diclofenac. CSREA also downregulated pain-related gene expression (SCN9A, ASIC1A, TACR1) and regulated key enzymes involved in endocannabinoid metabolism (FAAH, MAGL, DAGL), suggesting its role in the molecular modulation of pain pathways. These effects are likely mediated via modulation of the endocannabinoid system, particularly by rebalancing the CB1R/CB2R ratio. The findings suggest that CSREA holds promise as a natural therapeutic agent for managing pain and inflammation and warrants further investigation into its molecular mechanisms and long-term effects. Full article
Show Figures

Figure 1

22 pages, 2145 KB  
Article
α-Bisabolol, a Dietary Bioactive Terpene Attenuates Oxidative Stress and Inflammation in Colonic Mucosa of Acetic Acid-Induced Colitis in Rats
by Salim M. A. Bastaki, Naheed Amir, Shreesh Ojha and Ernest Adeghate
Int. J. Mol. Sci. 2025, 26(17), 8168; https://doi.org/10.3390/ijms26178168 - 22 Aug 2025
Viewed by 925
Abstract
Inflammatory bowel diseases (IBDs), such as ulcerative colitis, and Crohn’s disease are chronic idiopathic inflammatory diseases of the gastrointestinal system involving interaction between genetic and environmental factors mediating the occurrence of oxidative stress and inflammation. There is no permanent cure for IBD except [...] Read more.
Inflammatory bowel diseases (IBDs), such as ulcerative colitis, and Crohn’s disease are chronic idiopathic inflammatory diseases of the gastrointestinal system involving interaction between genetic and environmental factors mediating the occurrence of oxidative stress and inflammation. There is no permanent cure for IBD except long-term treatment or surgery (resection of the intestine), and the available agents in the long term appear unsatisfactory and elicit numerous adverse effects. To keep the disease in remission, prevent relapses and minimize adverse effects of currently used medicines, novel dietary compounds of natural origin convincingly appear to be one of the important therapeutic strategies for the pharmacological targeting of oxidative stress and inflammation. Therefore, it is imperative to investigate plant-derived dietary agents to overcome the debilitating conditions of IBD. In the present study, the effect of α-Bisabolol (BSB), a dietary bioactive monoterpene commonly found in many edible plants as well as important components of traditional medicines, was investigated in acetic acid (AA)-induced colitis model in rats. BSB was orally administered to Wistar male rats at a dose of 50 mg/kg/day either for 3 days before or 30 min after induction of IBD for 7 days through intrarectal administration of AA. The changes in body weight, macroscopic and microscopic analysis of the colon and calprotectin levels in the colon of rats from different experimental groups were observed on day 0, 2, 4, and 7. The levels of myeloperoxidase (MPO), a marker of neutrophil activation, reduced glutathione (GSH) and malondialdehyde (MDA), a marker of lipid peroxidation, and the levels of pro-inflammatory cytokines were measured. AA caused a significant reduction in body weight and induced macroscopic and microscopic ulcers, along with a significant decline of endogenous antioxidants (superoxide dismutase (SOD), catalase, and GSH), with a concomitant increase in MDA level and MPO activity. BSB significantly improved the AA-induced reduction in body weight, colonic mucosal histology, inhibited MDA formation, and restored antioxidant levels along with a reduction in MPO activity. AA also induced the release of pro-inflammatory cytokines such as interleukin-1 (IL-1), interleukin-23 (IL-23) and tumor necrosis factor-α (TNF-α). Furthermore, AA also increased levels of calprotectin, a protein released by neutrophils under inflammatory conditions of the gastrointestinal tract. BSB treatment significantly reduced the release of calprotectin and pro-inflammatory cytokines. The findings of the present study demonstrate that BSB has the potential to improve disease activity and rescue colonic tissues from damage by inhibiting oxidative stress, lipid peroxidation and inflammation. The findings are suggestive of the benefits of BSB in IBD treatment and substantiate its usefulness in colitis management, along with its gastroprotective effects in gastric ulcer. Full article
Show Figures

Figure 1

20 pages, 2607 KB  
Article
Triterpenoid Saponins and Flavonoid Glycosides from the Flower of Camellia flavida and Their Cytotoxic and α-Glycosidase Inhibitory Activities
by Siyuan Ma, Yuxin Wu, Hanfeng Min, Li Ge and Kedi Yang
Int. J. Mol. Sci. 2024, 25(20), 10977; https://doi.org/10.3390/ijms252010977 - 12 Oct 2024
Cited by 3 | Viewed by 1732
Abstract
Camellia flavida var. flavida, commonly known as “Jinhua Tea”, has its flowers and leaves traditionally utilized as tea and functional food sources. However, there is limited knowledge about its bioactive components and their biological activities. This study isolated ten previously unidentified glycoside compounds [...] Read more.
Camellia flavida var. flavida, commonly known as “Jinhua Tea”, has its flowers and leaves traditionally utilized as tea and functional food sources. However, there is limited knowledge about its bioactive components and their biological activities. This study isolated ten previously unidentified glycoside compounds from the flowers of Camellia flavida, including three oleanane-type triterpenoid saponins (compounds 13) and seven flavonoid glycosides (compounds 410), collectively named flavidosides A–J. This study assessed the cytotoxicity of these compounds against a panel of human cancer cell lines and their α-glucosidase inhibitory activities. Notably, flavidoside C showed significant cytotoxicity against BEL-7402 and MCF-7 cell lines, with IC50 values of 4.94 ± 0.41 and 1.65 ± 0.39 μM, respectively. Flavidoside H exhibited potent α-glucosidase inhibitory activity, with an IC50 value of 1.17 ± 0.30 mM. These findings underscore the potential of Camellia flavida in the development of functional foods. Full article
Show Figures

Figure 1

11 pages, 2379 KB  
Article
Effects of Hydroxysafflor Yellow A (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes
by Szu-Chieh Yu, Wan-Chun Chiu, Pei Yu Loe and Yi-Wen Chien
Int. J. Mol. Sci. 2024, 25(14), 7573; https://doi.org/10.3390/ijms25147573 - 10 Jul 2024
Cited by 3 | Viewed by 2039
Abstract
To assess the effects of hydroxysafflor yellow A (HSYA) on ultraviolet A (UVA)-induced damage in HaCaT keratinocytes. HaCaT keratinocytes were UVA-irradiated, and the effects of HSYA on cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, and messenger (m)RNA expression were measured. mRNA [...] Read more.
To assess the effects of hydroxysafflor yellow A (HSYA) on ultraviolet A (UVA)-induced damage in HaCaT keratinocytes. HaCaT keratinocytes were UVA-irradiated, and the effects of HSYA on cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, and messenger (m)RNA expression were measured. mRNA expressions of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and cyclooxygenase (COX)-2 were determined by a real-time polymerase chain reaction (RT-PCR). UVA exposure led to a decrease in cell viability and an increase in ROS generation in HaCaT keratinocytes. HSYA effectively increased the viability of HaCaT keratinocytes after UVA exposure and protected them from UVA-induced oxidative stress. Moreover, HSYA inhibited expressions of MMP-1, MMP-2, MMP-9, and COX-2 by HaCaT keratinocytes with UVA-induced photodamage. Our results suggest that HSYA can act as a free radical scavenger when keratinocytes are photodamaged. HSYA has the potential to be a skin-protective ingredient against UVA-induced photodamage. Full article
Show Figures

Figure 1

Back to TopTop