ijms-logo

Journal Browser

Journal Browser

Horticultural Crop Improvement: A New Era for Plant Molecular Research: Fourth Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 361

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Horticultural plants are intensively cultivated crops with high economic value, such as tree fruits, vegetables, ornamental plants, and tea crops. The wide taxonomic distribution and sophisticated domestication history of horticultural crops have led to their highly diverse and complex genomes, which has caused challenges regarding systematic studies of these plants.

Molecular biology reveals the molecular basis of biological processes in cells, and it is essential for understanding the mechanisms of the execution and regulation of biological processes. Molecular biology technologies have been applied to a wide range of living organisms. However, knowledge about horticultural crops is relatively less available compared to that of model plants. Recent advances in molecular biology—represented by revolutionary biotechnologies such as plant genome editing and next-generation sequencing—provide unprecedented opportunities to gain insights into less-well-studied horticultural crops.

For this Special Issue, we welcome the submission of original research articles, reviews, short notes, or opinion articles that highlight horticultural crop improvement applications in molecular biology, such as whole-genome resequencing, transcriptomics, proteomics, metabolomics, and genome editing. Topics of interest for this Special Issue include, but are not limited to, studies of regulatory mechanisms of plant growth and development, as well as efforts to improve crop yield, quality, and resistance to biotic/abiotic stresses.

Prof. Dr. Bo Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • horticultural plants
  • whole-genome resequencing
  • transcriptomics
  • proteomics
  • metabolomics
  • gene editing
  • gene regulation
  • growth and development
  • yield
  • quality
  • resistance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6169 KiB  
Article
Transcriptome and Metabolome Analyses Offer New Insights into Bolting Time Regulation in Broccoli
by Linqian Kuang, Yue Zhang, Nan Zhang, Yangyong Zhang, Honghao Lv, Yong Wang, Mu Zhuang, Limei Yang, Ke Huang, Zhansheng Li and Jialei Ji
Int. J. Mol. Sci. 2025, 26(8), 3726; https://doi.org/10.3390/ijms26083726 - 15 Apr 2025
Viewed by 266
Abstract
The globular buds and stems are the main edible organs of broccoli. Bolting is an important agronomic trait, and the timing of its occurrence is particularly critical when breeding and domesticating broccoli. The molecular mechanism that regulates broccoli bolting time is not well-understood. [...] Read more.
The globular buds and stems are the main edible organs of broccoli. Bolting is an important agronomic trait, and the timing of its occurrence is particularly critical when breeding and domesticating broccoli. The molecular mechanism that regulates broccoli bolting time is not well-understood. In this study, the apical flower bud and leaf tissues of two broccoli varieties with different bolting intensities were selected for metabolome and transcriptome analyses. In the apical flower buds of early-bolting B2554 and late-bolting B2557, 1094 differentially expressed genes and 206 differentially accumulated metabolites were identified. In the leaves, 487 differentially expressed genes and 40 differentially accumulated metabolites were identified. In the floral pathway, the expression of FLC (FLOWERING LOCUS C) was significantly upregulated, and that of FT (FLOWERING LOCUS T) was significantly downregulated in the late-bolting plants, indicating their possible role in suppressing bolting. In addition, significant differences were identified in the sucrose synthesis and transport, hormone synthesis, and signal transduction processes in early-bolting B2554 and late-bolting B2557. Sucrose accumulation in the leaves and apical flower buds of the early-bolting plants was about 1.3 times higher than in the late-bolting plants. Indole-3-acetic acid (IAA) and abscisic acid (ABA) accumulation in the apical flower buds of the late-bolting plants was more than twice that in the early-bolting plants. Jasmonic acid (JA) accumulation in the apical flower buds of the late-bolting plants was more than ten times higher than in the early-bolting plants. Phenolic acids may affect the bolting time of broccoli. This study offers new insights into the regulation mechanism of broccoli bolting and provides some potential molecular targets to include in breeding methods that regulate bolting time. Full article
Show Figures

Figure 1

Back to TopTop