ijms-logo

Journal Browser

Journal Browser

Molecular Insight into Dentistry and Craniofacial Surgery: Celebrating the 110th Anniversary of Dentistry in Italy

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (20 January 2025) | Viewed by 4147

Special Issue Editor


E-Mail Website
Guest Editor
Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
Interests: temporomandibular disorders; TED; temporomandibular joint; orofacial pain; dentistry; telemedicine; tele dentistry; implant; prosthesis; oral surgery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the last 100 years, dentistry has broadened its scope due to the increase in research, and numerous innovations in technology and in the digital and molecular sciences. The applications of new materials and techniques can lead to significant advances in the main dental branches, such as restorative dentistry, prosthodontics, oral surgery, implantology, pediatric dentistry, orthodontics, and temporomandibular disorder patients.

In this Special Issue, we would like to focus on the most recent and significant innovations in the dental field, particularly research at a molecular research level. Authors that have conducted studies on these themes are welcome to submit original research articles, reviews and short communications.

Dr. Giuseppe Minervini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dentistry
  • craniofacial district
  • technological
  • oral health
  • molecular research
  • materials
  • restorative dentistry
  • prosthodontics
  • oral surgery
  • implantology
  • pediatric dentistry
  • orthodontics
  • temporomandibular disorder

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 2869 KiB  
Article
Investigation of Oxidative-Stress Impact on Human Osteoblasts During Orthodontic Tooth Movement Using an In Vitro Tension Model
by Samira Hosseini, Julia Diegelmann, Matthias Folwaczny, Hisham Sabbagh, Sven Otto, Tamara Katharina Kakoschke, Andrea Wichelhaus, Uwe Baumert and Mila Janjic Rankovic
Int. J. Mol. Sci. 2024, 25(24), 13525; https://doi.org/10.3390/ijms252413525 - 17 Dec 2024
Viewed by 1024
Abstract
In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified. Therefore, we [...] Read more.
In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified. Therefore, we applied an OS in vitro-model utilizing H2O2 to study its effect on tension-induced mechanotransduction in human osteoblasts (hOBs). Experimental parameters were established based on cell viability and proliferation. Apoptosis detection was based on caspase-3/7 activity. Gene expression related to bone-remodeling (RUNX2, P2RX7, TNFRSF11B/OPG), inflammation (CXCL8/IL8, IL6, PTRGS2/COX2), autophagy (MAP1LC3A/LC3, BECN1), and apoptosis (CASP3, CASP8) was analyzed by RT-qPCR. IL6 and PGE2 secretion were determined by ELISA. Tension increased the expression of PTRGS2/COX2 in all groups, especially after stimulation with higher H2O2 concentration. This corresponds also to the measured PGE2 concentrations. CXCL8/IL8 was upregulated in all groups. Cells subjected to tension alone showed a general upregulation of osteogenic differentiation-related genes; however, pre-stimulation with OS did not induce significant changes especially towards downregulation. MAP1LC3A/LC3, BECN1 and CASP8 were generally upregulated in cells without OS pre-stimulation. Our results suggest that OS might have considerable impacts on cellular behavior during OTM. Full article
Show Figures

Figure 1

22 pages, 2584 KiB  
Article
Investigation of Impact of Oxidative Stress on Human Periodontal Ligament Cells Exposed to Static Compression
by Samira Hosseini, Julia Diegelmann, Matthias Folwaczny, Iris Frasheri, Andrea Wichelhaus, Hisham Sabbagh, Corrina Seidel, Uwe Baumert and Mila Janjic Rankovic
Int. J. Mol. Sci. 2024, 25(24), 13513; https://doi.org/10.3390/ijms252413513 - 17 Dec 2024
Viewed by 957
Abstract
Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on [...] Read more.
Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on orthodontic tooth movement (OTM) remains poorly understood. This study used an in vitro model with human PDLCs previously exposed to H2O2 to investigate the effects of OS under a static compressive force which simulated the conditions of OTM. Human PDLCs were treated with varying concentrations of H2O2 to identify sub-lethal doses that affected viability minimally. To mimic compromised conditions resembling OTM under OS, the cells were pretreated with the selected H2O2 concentrations for 24 h. Using an in vitro loading model, a static compressive force (2 g/cm2) was applied for an additional 24 h. The cell viability, proliferation, and cytotoxicity were evaluated using live/dead and resazurin assays. Apoptosis induction was assessed based on caspase-3/7 activity. The gene expression related to bone remodeling (RUNX2, TNFRSF11B/OPG, BGLAP), inflammation (IL6, CXCL8/IL8, PTGS2/COX2), apoptosis (CASP3, CASP8), and autophagy (MAP1LC3A/LC3, BECN1) was analyzed using RT-qPCR. This study suggests an altering effect of previous OS exposure on static-compression-related mechanosensing. Further research is needed to fully elucidate these mechanisms. Full article
Show Figures

Figure 1

9 pages, 471 KiB  
Communication
TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children
by Marta Milona, Tomasz Olszowski, Izabela Uzar, Krzysztof Safranow, Joanna Janiszewska-Olszowska, Monika Szmidt-Kądys, Hubert Rola, Maciej Sikora, Dariusz Chlubek and Grażyna Adler
Int. J. Mol. Sci. 2024, 25(13), 6985; https://doi.org/10.3390/ijms25136985 - 26 Jun 2024
Cited by 1 | Viewed by 1389
Abstract
The aim of the present study was to analyze the association of the TLR2 (Toll-like receptor 2 gene) 2258G>A (rs5743708), TLR4 (Toll-like receptor 4 gene) 896A>G (rs4986790), and TLR4 1196C>T (rs4986791) polymorphisms with dental caries in Polish children. The participants, 261 15-year-old children, [...] Read more.
The aim of the present study was to analyze the association of the TLR2 (Toll-like receptor 2 gene) 2258G>A (rs5743708), TLR4 (Toll-like receptor 4 gene) 896A>G (rs4986790), and TLR4 1196C>T (rs4986791) polymorphisms with dental caries in Polish children. The participants, 261 15-year-old children, were divided into two groups: 82 cases (i.e., children with DMFT (Decayed, Missing, and Filled Teeth) index >5, having either moderate or high caries experience, assigned as the “higher” caries experience group) and 179 controls (i.e., children with DMFT ≤ 5, having either low or very low caries experience, assigned as the “lower” caries experience group). Genomic DNA was isolated from buccal swabs, and genotyping was determined by means of real-time PCR (polymerase chain reaction). There were no significant differences in the genotype or allele distributions in all tested SNPs (single nucleotide polymorphisms) between children with “higher” caries experience and those with “lower” caries experience. TLR4 haplotype frequencies did not differ significantly between cases and controls. In an additional analysis with another case definition applied (subjects with DMFT ≥ 1 were assigned as “cases”, whereas children with DMFT = 0 were assigned as “controls”), no significant differences in the TLR2 and TLR4 genotype, allele frequencies, and TLR4 haplotype frequencies were found between the case and the control groups. The results of the present study broaden our knowledge on the potential genetic factors that might affect caries risk and suggest that TLR2 rs5743708 and TLR4 rs4986790 and rs4986791 SNPs are not associated with dental caries susceptibility in Polish children. Full article
Show Figures

Figure 1

Back to TopTop