ijms-logo

Journal Browser

Journal Browser

Molecular Imaging in Nanomedical Research—4th Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 1579

Special Issue Editor

Special Issue Information

Dear Colleagues, 

This Special Issue is the continuation of our previous Special Issue, “Molecular Imaging in Nanomedical Research 3.0”.

Since the 1990s, nanomedicine has dealt with the development of nanomaterials for diagnostics or therapy. Especially in the last decade, progress in nanomedical research took advantage of the widespread application in vitro and in vivo of imaging techniques for the characterization and preclinical/clinical testing of nanomedical tools. Light and electron microscopy, magnetic resonance imaging, optical imaging, positron emission tomography, and ultrasound imaging have mostly been used, while other imaging techniques have been originally applied to nanomedical issues, often adapting conventional methods to particular purposes; this has allowed us to successfully describe the biodistribution, targeting, efficacy, and clearance of novel nanoconstructs in single cells, tissues, organs, or whole organisms. 

This Special Issue will collect research and review articles as well as methodological papers to give a comprehensive overview of the role of imaging techniques for studying the structural and functional interactions of the nanoconstructs with the living systems. All researchers involved in nanomedical research (chemists, physicists, pharmacologists, biotechnologists, biologists, and physicians) are invited to submit their manuscripts.

Prof. Manuela Malatesta
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticle biodistribution
  • light microscopy
  • confocal fluorescence microscopy
  • super-resolution microscopy
  • electron microscopy
  • scanning probe microscopy
  • magnetic resonance imaging
  • optical imaging
  • positron emission tomography
  • ultrasound imaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

39 pages, 11432 KiB  
Review
Gold Nanoparticles for Retinal Molecular Optical Imaging
by Sumin Park, Van Phuc Nguyen, Xueding Wang and Yannis M. Paulus
Int. J. Mol. Sci. 2024, 25(17), 9315; https://doi.org/10.3390/ijms25179315 - 28 Aug 2024
Viewed by 442
Abstract
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical [...] Read more.
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging. Full article
(This article belongs to the Special Issue Molecular Imaging in Nanomedical Research—4th Edition)
Show Figures

Figure 1

22 pages, 2055 KiB  
Review
Histochemistry for Molecular Imaging in Nanomedicine
by Manuela Malatesta
Int. J. Mol. Sci. 2024, 25(15), 8041; https://doi.org/10.3390/ijms25158041 - 24 Jul 2024
Viewed by 524
Abstract
All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on [...] Read more.
All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on cells, tissues, and organs, to ensure both effectiveness and safety. To this aim, imaging techniques proved to be extremely valuable not only to visualize the nanoparticles in the biological environment but also to detect the morphological and molecular modifications they have induced. In particular, histochemistry is a long-established science able to provide molecular information on cell and tissue components in situ, bringing together the potential of biomolecular analysis and imaging. The present review article aims at offering an overview of the various histochemical techniques used to explore the impact of novel nanoproducts as therapeutic, reconstructive and diagnostic tools on biological systems. It is evident that histochemistry has been playing a leading role in nanomedical research, being largely applied to single cells, tissue slices and even living animals. Full article
(This article belongs to the Special Issue Molecular Imaging in Nanomedical Research—4th Edition)
Show Figures

Figure 1

Back to TopTop