ijms-logo

Journal Browser

Journal Browser

Special Issue "The Diabetic Eye Disease: Mechanisms Underlying Pathophysiology and Therapies"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 30 April 2020.

Special Issue Editor

Prof. Alexander V. Ljubimov
E-Mail Website1 Website2
Guest Editor
Biomedical Sciences and Neurosurgery; Regenerative Medicine Institute Eye Program; Cedars-Sinai Medical Center; Medicine, UCLA School of Medicine, USA
Interests: Cornea; nanomedicine; wound healing

Special Issue Information

Dear Colleagues,

In July 2019, the International Conference on Eye Diseases, sponsored by the United Scientific Group, was held in Fort Lauderdale, Florida. In this Special Issue of the International Journal of Molecular Sciences, we are pleased to present a compilation of articles representing scientific talks related to the conference topics including macular degeneration, diabetic retinopathy, glaucoma, corneal diseases, the impact of genetics, and novel approaches to treatment modalities for ocular complications. Based on these reports, the focus of this issue of the International Journal of Molecular Sciences has been put on the various aspects of diabetic eye disease including mechanisms, animal models, diagnosis and treatment. The articles reflect various aspects of eye diseases and provide insight into molecular mechanisms and therapeutic targets; interactions between genes, biochemical pathways, and genetic background; and their impacts on disease development and progression, as well as therapeutic interventions and clinical perspectives related to the disease processes. This includes both scientific research and clinical studies, which provide the basis for intellectual exchanges in understanding eye diseases.

The roles of genes involved in disrupting the retina, cornea, lens, and other parts of the eye together with compromised functions of cell organelles including the mitochondria and vascular basement membrane and cellular processes such as autophagy, ganglion cell death, occluding, and Wnt signaling in retinal angiogenesis, abnormalities of lysyl oxidase in diabetic retinopathy, and UPR signaling in bone marrow stem cells were some of the highlights of the scientific sessions at the conference. Clinical presentations focused on the importance of the genetic background, including outcomes governed by various genes and environmental factors in diabetic retinopathy, between diabetes and cornea, between endothelial progenitor cells and retinal vascular regeneration, soluble cytokine receptors in DME patients, VEGF and neuronal integrity in diabetic retinopathy. Presentations on the association of eye proteins with the cognition and management of diabetic tractional detachments received close attention as did talks on the significance of using broad-spectrum therapy for inherited retinal diseases and ocular neuromyotonia as a clinical neuro-ophthalmologic spectrum. The poster session attracted attention from all participants at the meeting. Overall, the conference was a great get-together of prominent scientists and clinicians with a common interest in improving the well-being of patients with eye disease, in particular, diabetic retinopathy.

Prof. Alexander V. Ljubimov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diabetes
  • diabetic retinopathy
  • cornea
  • glaucoma
  • diabetes therapy
  • growth factor
  • laser surgery
  • diabetic eye disease
  • molecular signaling
  • diabetic macular edema
  • neovascularization
  • tractional detachment
  • drugs
  • nanomedicine

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Alpha-Smooth Muscle Actin-Positive Perivascular Cells in Diabetic Retina and Choroid
Int. J. Mol. Sci. 2020, 21(6), 2158; https://doi.org/10.3390/ijms21062158 - 20 Mar 2020
Abstract
Structural alterations of pericytes in microvessels are important features of diabetic retinopathy. Although capillary pericytes had been known not to have α-smooth muscle actin (αSMA), a recent study revealed that a specific fixation method enabled the visualization of αSMA along retinal capillaries. In [...] Read more.
Structural alterations of pericytes in microvessels are important features of diabetic retinopathy. Although capillary pericytes had been known not to have α-smooth muscle actin (αSMA), a recent study revealed that a specific fixation method enabled the visualization of αSMA along retinal capillaries. In this study, we applied snap-fixation in wild type and streptozotocin-induced diabetic mice to evaluate the differences in vascular smooth muscle cells of the retina and the choroid. Mice eyeballs were fixed in ice-cold methanol to prevent the depolymerization of filamentous actin. Snap-fixated retina showed αSMA expression in higher-order branches along the capillaries as well as the arterioles and venules, which were not detected by paraformaldehyde fixation. In contrast, most choriocapillaris, except those close to the arterioles, were not covered with αSMA-positive perivascular mural cells. Large choroidal vessels were covered with more αSMA-positive cells in the snap-fixated eyes. Diabetes induced less coverage of αSMA-positive perivascular mural cells overall, but they reached higher-order branches of the retinal capillaries, which was prominent in the aged mice. More αSMA-positive pericytes were observed in the choroid of diabetic mice, but the αSMA-positive expression reduced with aging. This study suggests the potential role of smooth muscle cells in the pathogenesis of age-related diabetic retinopathy and choroidopathy. Full article
Show Figures

Figure 1

Open AccessArticle
Retinoprotection by BGP-15, a Hydroximic Acid Derivative, in a Type II Diabetic Rat Model Compared to Glibenclamide, Metformin, and Pioglitazone
Int. J. Mol. Sci. 2020, 21(6), 2124; https://doi.org/10.3390/ijms21062124 - 19 Mar 2020
Abstract
High blood glucose and the consequential ischemia-reperfusion (I/R) injury damage vessels of the retina, deteriorating its function, which can be clearly visualized by electroretinography (ERG). The aim of the present study was to evaluate the possible retinoprotective effects of systemic BGP-15, an emerging [...] Read more.
High blood glucose and the consequential ischemia-reperfusion (I/R) injury damage vessels of the retina, deteriorating its function, which can be clearly visualized by electroretinography (ERG). The aim of the present study was to evaluate the possible retinoprotective effects of systemic BGP-15, an emerging drug candidate, in an insulin resistant animal model, the Goto-Kakizaki rat, and compare these results with well-known anti-diabetics such as glibenclamide, metformin, and pioglitazone, which even led to some novel conclusions about these well-known agents. Experiments were carried out on diseased animal model (Goto-Kakizaki rats). The used methods include weight measurement, glucose-related measurements—like fasting blood sugar analysis, oral glucose tolerance test, hyperinsulinemic euglycemic glucose clamp (HEGC), and calculations of different indices from HEGC results—electroretinography and Western Blot. Beside its apparent insulin sensitization, BGP-15 was also able to counteract the retina-damaging effect of Type II diabetes comparable to the aforementioned anti-diabetics. The mechanism of retinoprotective action may include sirtuin 1 (SIRT1) and matrix metalloproteinase 9 (MMP9) enzymes, as BGP-15 was able to elevate SIRT1 and decrease MMP9 expression in the eye. Based on our results, this emerging hydroximic acid derivative might be a future target of pharmacological developments as a potential drug against the harmful consequences of diabetes, such as diabetic retinopathy. Full article
Show Figures

Figure 1

Open AccessArticle
Kynurenic Acid Protects Against Ischemia/Reperfusion-Induced Retinal Ganglion Cell Death in Mice
Int. J. Mol. Sci. 2020, 21(5), 1795; https://doi.org/10.3390/ijms21051795 - 05 Mar 2020
Abstract
Background: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. Methods: We injected [...] Read more.
Background: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. Methods: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. Results: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. Conclusion: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose. Full article
Show Figures

Graphical abstract

Open AccessArticle
Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation
Int. J. Mol. Sci. 2020, 21(5), 1771; https://doi.org/10.3390/ijms21051771 - 05 Mar 2020
Abstract
High homocysteine is routinely observed in diabetic patients, and this non-protein amino acid is considered as an independent risk factor for diabetic retinopathy. Homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), which is a major methyl donor critical in DNA methylation. Hyperhomocysteinemia is [...] Read more.
High homocysteine is routinely observed in diabetic patients, and this non-protein amino acid is considered as an independent risk factor for diabetic retinopathy. Homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), which is a major methyl donor critical in DNA methylation. Hyperhomocysteinemia is implicated in increased oxidative stress and activation of MMP-9, and in diabetic retinopathy, the activation of MMP-9 facilitates capillary cell apoptosis. Our aim was to investigate the mechanism by which homocysteine activates MMP-9 in diabetic retinopathy. Human retinal endothelial cells, incubated with/without 100 μM homocysteine, were analyzed for MMP-9 and its tissue inhibitor Timp1 expressions and interactions, and ROS levels. Timp1 and MMP-9 promoters were analyzed for methylated and hydroxymethylated cytosine levels (5mC and 5hmC respectively) by the DNA capture method, and DNA- methylating (Dnmt1) and hydroxymethylating enzymes (Tet2) binding by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from diabetic rats receiving homocysteine. Homocysteine supplementation exacerbated hyperglycaemia-induced MMP-9 and ROS levels and decreased Timp1 and its interactions with MMP-9. Homocysteine also aggravated Dnmts and Tets activation, increased 5mC at Timp1 promoter and 5hmC at MMP-9 promoter, and suppressed Timp1 transcription and activated MMP-9 transcription. Similar results were obtained from retinal microvessels from diabetic rats receiving homocysteine. Thus, hyperhomocysteinemia in diabetes activates MMP-9 functionally by reducing Timp1-MMP-9 interactions and transcriptionally by altering DNA methylation-hydroxymethylation of its promoter. The regulation of homocysteine could prevent/slow down the development of retinopathy and prevent their vision loss in diabetic patients. Full article
Show Figures

Graphical abstract

Open AccessArticle
Extracellular Vesicle-Induced Classical Complement Activation Leads to Retinal Endothelial Cell Damage via MAC Deposition
Int. J. Mol. Sci. 2020, 21(5), 1693; https://doi.org/10.3390/ijms21051693 - 01 Mar 2020
Abstract
Several studies have suggested that there is a link between membrane attack complex (MAC) deposition in the retina and the progression of diabetic retinopathy (DR). Our recent investigation demonstrated that circulating IgG-laden extracellular vesicles contribute to an increase in retinal vascular permeability in [...] Read more.
Several studies have suggested that there is a link between membrane attack complex (MAC) deposition in the retina and the progression of diabetic retinopathy (DR). Our recent investigation demonstrated that circulating IgG-laden extracellular vesicles contribute to an increase in retinal vascular permeability in DR through activation of the complement system. However, the mechanism through which extracellular vesicle-induced complement activation contributes to retinal vascular cytolytic damage in DR is not well understood. In this study, we demonstrate that IgG-laden extracellular vesicles in rat plasma activate the classical complement pathway, and in vitro Streptozotocin (STZ)-induced rat diabetic plasma results in MAC deposition and cytolytic damage in human retinal endothelial cells (HRECs). Moreover, removal of the plasma extracellular vesicles reduced the MAC deposition and abrogated cytolytic damage seen in HRECs. Together, the results of this study demonstrate that complement activation by IgG-laden extracellular vesicles in plasma could lead to MAC deposition and contribute to endothelium damage and progression of DR. Full article
Show Figures

Figure 1

Open AccessArticle
Long-Acting FGF21 Inhibits Retinal Vascular Leakage in In Vivo and In Vitro Models
Int. J. Mol. Sci. 2020, 21(4), 1188; https://doi.org/10.3390/ijms21041188 - 11 Feb 2020
Abstract
The aim of the current study was to investigate the impact of long-acting fibroblast growth factor 21 (FGF21) on retinal vascular leakage utilizing machine learning and to clarify the mechanism underlying the protection. To assess the effect on retinal vascular leakage, C57BL/6J mice [...] Read more.
The aim of the current study was to investigate the impact of long-acting fibroblast growth factor 21 (FGF21) on retinal vascular leakage utilizing machine learning and to clarify the mechanism underlying the protection. To assess the effect on retinal vascular leakage, C57BL/6J mice were pre-treated with long-acting FGF21 analog or vehicle (Phosphate Buffered Saline; PBS) intraperitoneally (i.p.) before induction of retinal vascular leakage with intravitreal injection of mouse (m) vascular endothelial growth factor 164 (VEGF164) or PBS control. Five hours after mVEGF164 injection, we retro-orbitally injected Fluorescein isothiocyanate (FITC) -dextran and quantified fluorescence intensity as a readout of vascular leakage, using the Image Analysis Module with a machine learning algorithm. In FGF21- or vehicle-treated primary human retinal microvascular endothelial cells (HRMECs), cell permeability was induced with human (h) VEGF165 and evaluated using FITC-dextran and trans-endothelial electrical resistance (TEER). Western blots for tight junction markers were performed. Retinal vascular leakage in vivo was reduced in the FGF21 versus vehicle- treated mice. In HRMECs in vitro, FGF21 versus vehicle prevented hVEGF-induced increase in cell permeability, identified with FITC-dextran. FGF21 significantly preserved TEER compared to hVEGF. Taken together, FGF21 regulates permeability through tight junctions; in particular, FGF21 increases Claudin-1 protein levels in hVEGF-induced HRMECs. Long-acting FGF21 may help reduce retinal vascular leakage in retinal disorders and machine learning assessment can help to standardize vascular leakage quantification. Full article
Show Figures

Graphical abstract

Open AccessArticle
Pemafibrate Prevents Retinal Pathological Neovascularization by Increasing FGF21 Level in a Murine Oxygen-Induced Retinopathy Model
Int. J. Mol. Sci. 2019, 20(23), 5878; https://doi.org/10.3390/ijms20235878 - 23 Nov 2019
Cited by 1
Abstract
Large-scale clinical trials, such as the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) studies, have shown that the administration of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, suppresses the progression of [...] Read more.
Large-scale clinical trials, such as the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) studies, have shown that the administration of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, suppresses the progression of diabetic retinopathy. In this paper, we reveal a therapeutic effect of a selective PPARα modulator (SPPARMα), pemafibrate, against pathological angiogenesis in murine models of retinopathy. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice by exposure to 85% oxygen from postnatal day eight (P8) for 72 h. Vehicle, pemafibrate or fenofibrate was administrated by oral gavage from P12 to P16 daily. Administration of pemafibrate, but not fenofibrate, significantly reduced pathological angiogenesis in OIR. After oral pemafibrate administration, expression levels of downstream PPARα targets such as acyl-CoA oxidase 1 (Acox1), fatty acid binding protein 4 (Fabp4), and fibroblast growth factor 21 (Fgf21) were significantly increased in the liver but not in the retina. A significant increase in plasma FGF21 and reduced retinal hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (Vegfa) were also observed after this treatment. In an in vitro HIF-luciferase assay, a long-acting FGF21 analogue, but not pemafibrate, suppressed HIF activity. These data indicate that SPPARMα pemafibrate administration may prevent retinal pathological neovascularization by upregulating FGF21 in the liver. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
MicroRNAs in Vascular Eye Diseases
Int. J. Mol. Sci. 2020, 21(2), 649; https://doi.org/10.3390/ijms21020649 - 19 Jan 2020
Abstract
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for [...] Read more.
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV. Full article
Show Figures

Figure 1

Back to TopTop