Eicosanoid Profiles in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Inclusion Criteria
4.2. Exclusion Criteria
4.3. Sample Collection
4.4. LC/MS Eicosanoid Assay
4.5. Data Analysis
4.6. Statistics
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohamed, Q.; Gillies, M.C.; Wong, T.Y. Management of diabetic retinopathy: A systematic review. JAMA 2007, 298, 902–916. [Google Scholar] [CrossRef]
- Javitt, J.C.; Aiello, L.P.; Chiang, Y.; Ferris, F.L.; Canner, J.K.; Greenfield, S. Preventive eye care in people with diabetes is cost-saving to the federal government. Implications for health-care reform. Diabetes Care 1994, 17, 909–917. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Moss, S.E.; Cruickshanks, K.J. The Wisconsin epidemiologic study of diabetic retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 1995, 102, 7–16. [Google Scholar] [CrossRef]
- Fundus Photographic Risk Factors for Progression of Diabetic Retinopathy: ETDRS Report Number 12. Ophthalmology 1991, 98, 823–833. [CrossRef]
- Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.; Moss, S.E.; Taylor, H.R.; Hamman, R.F. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 1960 2004, 122, 552–563. [Google Scholar] [CrossRef]
- Giuliari, G.P. Diabetic retinopathy: Current and new treatment options. Curr. Diabetes Rev. 2012, 8, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Stefánsson, E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol. Scand. 2001, 79, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Michels, R. Basic and Advanced Vitreous Surgery; Springer: New York, NY, USA, 1986. [Google Scholar]
- Iyer, S.R.; Regan, K.A.; Burnham, J.M.; Chen Ching, J. Surgical management of diabetic tractional retinal detachments. Surv. Ophthalmol. 2019, 64, 780–809. [Google Scholar] [CrossRef] [PubMed]
- Schwartzman, M.L.; Iserovich, P.; Gotlinger, K.; Bellner, L.; Dunn, M.W.; Sartore, M.; Grazia, P.M.; Leonardi, A.; Sathe, S.; Beaton, A.; et al. Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy. Diabetes 2010, 59, 1780–1788. [Google Scholar] [CrossRef]
- Othman, A.; Ahmad, S.; Megyerdi, S.; Mussell, R.; Choksi, K.; Maddipati, K.R.; Elmarakby, A.; Rizk, N.; Al-Shabrawey, M. 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: Contribution of NADPH oxidase. PLoS ONE 2013, 8, e57254. [Google Scholar] [CrossRef]
- Diabetic Retinopathy Clinical Research Network; Elman, M.J.; Aiello, L.P.; Beck, R.W.; Bressler, N.M.; Bressler, S.B.; Edwards, A.R.; Ferris, F.L.; Friedman, S.M.; Glassman, A.R.; et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010, 117, 1064–1077.e35. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.N. On the pathogenesis of diabetic retinopathy. A 1990 update. Ophthalmology 1991, 98, 586–593. [Google Scholar] [CrossRef]
- Van Geest, R.J.; Klaassen, I.; Lesnik-Oberstein, S.Y.; Tan, H.S.; Mura, M.; Goldschmeding, R.; Van Noorden, C.J.; Schlingemann, R.O. Vitreous TIMP-1 levels associate with neovascularization and TGF-β2 levels but not with fibrosis in the clinical course of proliferative diabetic retinopathy. J. Cell Commun. Signal. 2013, 7, 1–9. [Google Scholar] [CrossRef]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Adamis, A.P.; Miller, J.W.; Bernal, M.T.; D’Amico, D.J.; Folkman, J.; Yeo, T.K.; Yeo, K.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 1994, 118, 445–450. [Google Scholar] [CrossRef]
- Al-Shabrawey, M.; Mussell, R.; Kahook, K.; Tawfik, A.; Eladl, M.; Sarthy, V.; Nussbaum, J.; El-Marakby, A.; Park, S.Y.; Gurel, Z.; et al. Increased expression and activity of 12-lipoxygenase in oxygen-induced ischemic retinopathy and proliferative diabetic retinopathy: Implications in retinal neovascularization. Diabetes 2011, 60, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.J.; Walenga, R.W.; Setty, B.N.; Phelps, D.L. Effects of changes in oxygen tension on lipoxygenase metabolites. Serum 15-HETE is increased in kittens exposed to hyperoxia. Biol. Neonate. 1990, 57, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, A.K.; Blaskova, E.; Pakala, S.B.; Zhao, T.; Glasgow, W.C.; Penn, J.S.; Johnson, D.A.; Rao, G.N. 15(S)-HETE production in human retinal microvascular endothelial cells by hypoxia: Novel role for MEK1 in 15(S)-HETE induced angiogenesis. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4930–4938. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bajpai, A.K.; Blaskova, E.; Pakala, S.B.; Zhao, T.; Glasgow, W.C.; Penn, J.S.; Johnson, D.A.; Rao, G.N. Key role of 15-LO/15-HETE in angiogenesis and functional recovery in later stages of post-stroke mice. Sci. Rep. 2017, 7, 46698. [Google Scholar] [CrossRef]
- Soumya, S.J.; Binu, S.; Helen, A.; Anil Kumar, K.; Reddanna, P.; Sudhakaran, P.R. Effect of 15-lipoxygenase metabolites on angiogenesis: 15(S)-HPETE is angiostatic and 15(S)-HETE is angiogenic. Inflamm Res. 2012, 61, 707–718. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.-M.; Li, Y.-N.; Li, P.-Y.; Wang, D.; Liu, Y.; Qu, Y.-Y.; Zhu, D.-L.; Zhu, Y.-L. The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains. Neurol. Res. 2017, 39, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Joseph, G.; Zhang, F.F.; Nguyen, H.; Jiang, H.; Gotlinger, K.H.; Falck, J.R.; Yang, J.; Schwartzman, M.L.; Guo, A.M. 20-HETE contributes to ischemia-induced angiogenesis. Vascul. Pharmacol. 2016, 83, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ackerman, R.; Saleh, M.; Gotlinger, K.H.; Kessler, M.; Mendelowitz, L.G.; Falck, J.R.; Arbab, A.S.; Scicli, A.G.; Schwartzman, M.L.; et al. 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. J. Pharm. Exp. Ther. 2014, 348, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Sun, C.W.; Maier, K.G.; Williams, J.M.; Pabbidi, M.R.; Didion, S.P.; Falck, J.R.; Zhuo, J.; Roman, R.J. 20-Hydroxyeicosatetraenoic acid contributes to the inhibition of K+ channel activity and vasoconstrictor response to angiotensin II in rat renal microvessels. PLoS ONE 2013, 8, e82482. [Google Scholar] [CrossRef] [PubMed]
- Amaral, S.L.; Maier, K.G.; Schippers, D.N.; Roman, R.J.; Greene, A.S. CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1528–H1535. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Faraci, F.M.; Kaduce, T.L.; Harmon, S.; Modrick, M.L.; Hu, S.; Moore, S.A.; Falck, J.R.; Weintraub, N.L.; Spector, A.A. 20-Hydroxyeicosatetraenoic acid is a potent dilator of mouse basilar artery: Role of cyclooxygenase. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2301–H2307. [Google Scholar] [CrossRef]
- Fang, X.; Faraci, F.M.; Kaduce, T.L.; Harmon, S.; Modrick, M.L.; Hu, S.; Moore, S.A.; Falck, J.R.; Weintraub, N.L.; Spector, A.A. 20-hydroxyeicosatetraenoic acid (20-HETE) metabolism in coronary endothelial cells. J. Biol. Chem. 2004, 279, 2648–2656. [Google Scholar] [CrossRef]
- Ma, C.; Li, Y.; Ma, J.; Liu, Y.; Li, Q.; Niu, S.; Shen, Z.; Zhang, L.; Pan, Z.; Zhu, D. Key role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension. Hypertension Dallas. Tex. 1979 2011, 58, 679–688. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Y.; Shen, T.; Zhang, C.; Ma, J.; Zhang, L.; Liu, F.; Zhu, D. Placenta growth factor mediates angiogenesis in hypoxic pulmonary hypertension. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 159–168. [Google Scholar] [CrossRef]
- Augustin, A.J.; Grus, F.H.; Koch, F.; Spitznas, M. Detection of eicosanoids in epiretinal membranes of patients suffering from proliferative vitreoretinal diseases. Br. J. Ophthalmol. 1997, 81, 58–60. [Google Scholar] [CrossRef][Green Version]
- Ibrahim, A.S.; Elshafey, S.; Sellak, H.; Hussein, K.A.; El-Sherbiny, M.; Abdelsaid, M.; Rizk, N.; Beasley, S.; Tawfik, A.M.; Smith, S.B.; et al. A lipidomic screen of hyperglycemia-treated HRECs links 12/15-Lipoxygenase to microvascular dysfunction during diabetic retinopathy via NADPH oxidase. J. Lipid Res. 2015, 56, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Antonipillai, I.; Nadler, J.; Vu, E.J.; Bughi, S.; Natarajan, R.; Horton, R. A 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid, is increased in diabetics with incipient and early renal disease. J. Clin. Endocrinol. Metab. 1996, 81, 1940–1945. [Google Scholar] [CrossRef][Green Version]
- Martidis, A.; Duker, J.S.; Greenberg, P.B.; Rogers, A.H.; Puliafito, C.A.; Reichel, E.; Baumal, C. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 2002, 109, 920–927. [Google Scholar] [CrossRef]
- Guo, A.M.; Arbab, A.S.; Falck, J.R.; Chen, P.; Edwards, P.A.; Roman, R.J.; Scicli, A.G. Activation of vascular endothelial growth factor through reactive oxygen species mediates 20-hydroxyeicosatetraenoic acid-induced endothelial cell proliferation. J. Pharm. Exp. Ther. 2007, 321, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Gubitosi-Klug, R.A.; Talahalli, R.; Du, Y.; Nadler, J.L.; Kern, T.S. 5-lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 2008, 57, 1387–1393. [Google Scholar] [CrossRef]
- Talahalli, R.; Zarini, S.; Sheibani, N.; Murphy, R.C.; Gubitosi-Klug, R.A. Increased synthesis of leukotrienes in the mouse model of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1699–1708. [Google Scholar] [CrossRef]
- Orozco, L.D.; Liu, H.; Perkins, E.; Johnson, D.A.; Chen, B.B.; Fan, F.; Baker, R.C.; Roman, R.J. 20-Hydroxyeicosatetraenoic acid inhibition attenuates balloon injury-induced neointima formation and vascular remodeling in rat carotid arteries. J. Pharm. Exp. Ther. 2013, 346, 67–74. [Google Scholar] [CrossRef]
- Arevalo, J.F.; Lasave, A.F.; Kozak, I.; Al Rashaed, S.; Al Kahtani, E.; Maia, M.; Farah, M.E.; Cutolo, C.; Brito, M.; Osorio, C.; et al. Preoperative bevacizumab for tractional retinal detachment in proliferative diabetic retinopathy: A prospective randomized clinical trial. Am. J. Ophthalmol. 2019, 207, 279–287. [Google Scholar] [CrossRef]
- Dreisbach, A.W.; Smith, S.V.; Kyle, P.B.; Ramaiah, M.; Amenuke, M.; Garrett, M.R.; Lirette, S.T.; Griswold, M.E.; Roman, R.J. Urinary CYP eicosanoid excretion correlates with glomerular filtration in African-Americans with chronic kidney disease. Prostaglandins Other Lipid Mediat. 2014, 113, 45–51. [Google Scholar] [CrossRef]
Metabolite | PDR ± SEM (31) | Control ± SEM (13) | p-Value |
---|---|---|---|
5-HETE | 32.85 ± 13.04 | 5.185 ± 2.155 | 0.0444 |
12-HETE | 17.32 ± 5.869 | 3.462 ±1.698 | 0.0297 |
15-HETE | 38.042 ± 19.526 | 5.269 ± 2.763 | 0.1066 |
19-HETE | 1.594 ± 0.7731 | 0 | 0.048 |
20-HETE | 6.884 ± 1.671 | 1.538 ±1.042 | 0.0096 |
20-COOH-AA | 99.28 ± 18.919 | 23.56 ±11.302 | 0.0013 |
11,12-EET | 22.684 ± 6.234 | 8.052 ± 3.070 | 0.0367 |
14,15-EET | 32.629 ± 8.507 | 15.408 ± 4.142 | 0.0544 |
11,12-DiHETE | 27.037 ± 4.876 | 18.892 ± 4.515 | 0.2283 |
14,15-DiHETE | 40.13 ± 5.950 | 24.831 ± 5.150 | 0.0594 |
12-HETrE | 38.26 ± 10.23 | 36.646 ±10.018 | 0.9108 |
Total ꞷ-hydroxylase level | 106.2 ± 20.118 | 25.1 ±12.183 | 0.0013 |
Total epoxygenase level | 175.403 ± 37.245 | 84.354 ±21.101 | 0.0394 |
Metabolite | VH ± SEM (11) | TRD ± SEM (8) | p-Value |
---|---|---|---|
5-HETE | 55.772 ± 36.114 | 19.088 ± 5.708 | 0.3383 |
12-HETE | 29.164 ± 15.587 | 10.575 ± 3.046 | 0.2671 |
15-HETE | 73.273 +/− 53.75 | 13.575 ± 7.183 | 0.2959 |
20-HETE | 7.927 ± 2.169 | 10.213 ± 4.280 | 0.6436 |
20-COOH-AA | 119.518 ± 34.719 | 87.338 ± 41.407 | 0.5603 |
Total ꞷ-hydroxylase level | 127.446 ± 36.211 | 97.550 ± 44.996 | 0.6124 |
12-HETrE | 69.355 ± 24.072 | 21.713 ± 10.290 | 0.0913 |
11,12-EET | 25.645 ± 10.543 | 12.563 ± 6.829 | 0.313 |
14,15-EET | 37.381 ± 13.720 | 18.838 ± 9.437 | 0.2815 |
11,12-DiHETE | 38.691 ± 8.852 | 18.829 ± 5.510 | 0.0658 |
14,15-DiHETE | 50.582 ± 10.828 | 31.414 ± 5.510 | 0.1366 |
Total epoxygenase level | 212.363 ± 67.437 | 103.200 ± 30.979 | 0.1638 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, A.L.; Roman, R.J.; Regan, K.A.; Bolch, C.A.; Chen, C.-J.; Iyer, S.S.R. Eicosanoid Profiles in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. Int. J. Mol. Sci. 2020, 21, 7451. https://doi.org/10.3390/ijms21207451
Lin AL, Roman RJ, Regan KA, Bolch CA, Chen C-J, Iyer SSR. Eicosanoid Profiles in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. International Journal of Molecular Sciences. 2020; 21(20):7451. https://doi.org/10.3390/ijms21207451
Chicago/Turabian StyleLin, Albert L, Richard J Roman, Kathleen A Regan, Charlotte A Bolch, Ching-Jygh Chen, and Siva S.R. Iyer. 2020. "Eicosanoid Profiles in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy" International Journal of Molecular Sciences 21, no. 20: 7451. https://doi.org/10.3390/ijms21207451
APA StyleLin, A. L., Roman, R. J., Regan, K. A., Bolch, C. A., Chen, C.-J., & Iyer, S. S. R. (2020). Eicosanoid Profiles in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. International Journal of Molecular Sciences, 21(20), 7451. https://doi.org/10.3390/ijms21207451