ijms-logo

Journal Browser

Journal Browser

Research Advances in Retinal Neurodegeneration and Neuroprotection Strategies

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2306

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
Interests: retina; AMD; oxidative stress; retinal neurodegeneration
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
Interests: retina; neurodegeneration; neuroprotection; retinal pigment epithelium; retinal function; age related macular degeneration; retinal organoids; hESCs; iPSCs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of The International Journal of Molecular Sciences will provide an update on retinal neurodegenerative diseases and neuroprotective strategies. The dramatic increase in the number of patients suffering from retinal disorders has compelled expert research groups in this field to focus their efforts on identifying new therapeutic targets and developing protective strategies. This topic spans several fields, including physiology, neuroscience, pathology, and pharmacology. The main retinal neurodegenerative diseases caused by harmful environmental stimuli or genetic mutations include Age-Related Macular Degeneration, Glaucoma, Leber's Congenital Amaurosis, Retinitis Pigmentosa, Retinoschisis, Stargardt's Disease, and Usher Syndrome. To date, many molecular and physiological mechanisms linked to retinal disorders and vision loss have been identified, including pathways involved in the dysfunction of epithelial cells, photoreceptor and ganglion cells death, oxidative stress, autophagy dysfunction, inflammatory markers, retinal immune system impairment, the breakdown of the blood–retinal barrier, and retinal detachment. Despite the vast scientific literature available, further studies are necessary to increase our knowledge of still unknown mechanisms related to different pathologies. Furthermore, since the retina is part of the central nervous system, and its neuronal circuitry, glial cells, and vasculature and immunocompetent systems recapitulate the functionality of many areas of the brain, the identification of early biomarkers of other neurodegenerative disorders in the retina could be beneficial. We encourage authors to submit original research articles, reviews, or short communications documenting in vitro and in vivo preclinical studies. Well-documented strategies that counteract vision loss, ranging natural compounds, small molecules, nanoparticles, antibodies, peptides, gene therapy, exosomes, etc., will be welcome in this Special Issue. Publishing an article in this Special Issue provides a great opportunity to join a community of experts in this field.

Dr. Maccarone Rita
Dr. Darin Zerti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • retinal neurodegeneration
  • retinal neuroprotection
  • retinal pigment epithelium dysfunction
  • electrophysiology
  • molecular targets
  • drug delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1860 KB  
Article
Hormetic Effects of Curcumin in RPE Cells: SIRT1 and Caspase-3 Inactivation with Implications for AMD
by Jacopo Di Gregorio, Darin Zerti, Giulia Carozza, Annamaria Capozzo, Vincenzo Flati, Marco Feligioni and Rita Maccarone
Int. J. Mol. Sci. 2025, 26(17), 8555; https://doi.org/10.3390/ijms26178555 - 3 Sep 2025
Viewed by 198
Abstract
Retinal Pigment Epithelium (RPE), a component of the blood–retinal barrier, plays a pivotal role in maintaining retinal homeostasis and visual function. Dysfunction of the RPE is an early event that triggers photoreceptor death, in Age-related Macular Degeneration (AMD), a multifactorial disorder primarily caused [...] Read more.
Retinal Pigment Epithelium (RPE), a component of the blood–retinal barrier, plays a pivotal role in maintaining retinal homeostasis and visual function. Dysfunction of the RPE is an early event that triggers photoreceptor death, in Age-related Macular Degeneration (AMD), a multifactorial disorder primarily caused by an imbalance between endogenous antioxidant defenses and reactive oxygen species production. Our in vitro study investigated the hormetic effects of curcumin in human RPE cells (ARPE-19), focusing on its capability to modulate two enzymes related to the onset of AMD: Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase enzyme involved in cellular metabolism, aging, and stress response, and caspase-3, a crucial enzyme in programmed cell death. Curcumin exhibited classic hormetic doseresponses, with low concentrations (5–10 μM) providing cytoprotection while at high doses (≥20 μM) inducing toxicity. Under moderate oxidative stress, acetylated p53 was significantly reduced, indicating SIRT1 activation; curcumin 10 μM restored basal SIRT1 activity, while 5 µM did not. Both concentrations significantly decreased cleaved caspase-3 levels, demonstrating the anti-apoptotic effects of curcumin. Our results reveal curcumin’s hormetic mechanisms of RPE protection and emphasize the critical importance of dose optimization within the hormetic window for AMD therapeutic development. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

28 pages, 3613 KB  
Review
Epigenetic Alterations in Age-Related Macular Degeneration: Mechanisms and Implications
by Dana Kisswani, Christina Carroll, Fatima Valdes-Mora and Matt Rutar
Int. J. Mol. Sci. 2025, 26(15), 7601; https://doi.org/10.3390/ijms26157601 - 6 Aug 2025
Viewed by 704
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease [...] Read more.
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease onset and progression remain poorly understood. A growing body of evidence suggests that epigenetic modifications may serve as a potential missing link regulating gene–environment interactions. This review incorporates recent findings on DNA methylation, including both hypermethylation and hypomethylation patterns affecting genes such as silent mating type information regulation 2 homolog 1 (SIRT1), glutathione S-transferase isoform (GSTM), and SKI proto-oncogene (SKI), which may influence key pathophysiological drivers of AMD. We also examine histone modification patterns, chromatin accessibility, the status of long non-coding RNAs (lncRNAs) in AMD pathogenesis and in regulating pathways pertinent to the pathophysiology of the disease. While the field of ocular epigenetics remains in its infancy, accumulating evidence to date points to a burgeoning role for epigenetic regulation in AMD, pre-clinical studies have yielded promising findings for the prospect of epigenetics as a future therapeutic avenue. Full article
Show Figures

Figure 1

Back to TopTop