Special Issue "Geovisualization and Map Design"

A special issue of ISPRS International Journal of Geo-Information (ISSN 2220-9964).

Deadline for manuscript submissions: closed (1 October 2020).

Special Issue Editors

Prof. Dr. Vit Vozenilek
Website
Guest Editor
Palacky University Olomouc, dept. of Geoinformatics, Olomouc, Czech Republic
Interests: cartography; geovisualization; atlases; spatial synthesis; systematic visualization; multimedia cartography; thematic maps
Prof. Dr. Georg Gartner
Website
Guest Editor
Department of Geodesy and Geoinformation, Technical University Vienna, Vienna, Austria
Interests: theoretical cartography; location-based services; web mapping; semiology; service oriented cartography; semantic cartography
Special Issues and Collections in MDPI journals
Dr. Ian Muehlenhaus
Website
Guest Editor
GIS Professional Programs, University of Wisconsin – Madison, Madison, WI, USA
Interests: web maps, persuasive maps, story maps, play maps

Special Issue Information

Dear Colleagues,

Geovisualization (Geographic Visualization) deals solely with displaying information that has a geospatial component. Geovisualization requires converting and positioning thematic information into a visual form. Map design is the process of effectively and efficiently visualizing geospatial information. Spatial information in a well-designed map is quickly retrievable, clearly communicated, and unmistakable, easy to evoke, and encourages confidence in both the geovisualization output and activity that results from the map's use. This Special Issue focuses on new processes or frameworks for effective map designs, explores scientific research on cartographic communication through map design, and brings together a wide variety of experts from different disciplines to help shape geovisualization and map design going forward.

Contributions can address the following topics:

  • development of geovisualization tools
  • visual and content analysis in geovisualization
  • contemporary map design
  • current map design research
  • tools for designing specific cartographic products

Prof. Dr. Vit Vozenilek
Prof. Dr. Georg Gartner
Dr. Ian Muehlenhaus
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. ISPRS International Journal of Geo-Information is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • development of geovisualization tools
  • visual and content analysis in geovisualization
  • contemporary map design
  • current map design research
  • tools for designing specific cartographic products

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Form Follows Content: An Empirical Study on Symbol-Content (In)Congruences in Thematic Maps
ISPRS Int. J. Geo-Inf. 2020, 9(12), 719; https://doi.org/10.3390/ijgi9120719 - 02 Dec 2020
Abstract
Through signs and symbols, maps represent geographic space in a generalized and abstracted way. Cartographic research is, therefore, concerned with establishing a mutually shared set of signs and semiotic rules to communicate geospatial information successfully. While cartographers generally strive for cognitively congruent maps, [...] Read more.
Through signs and symbols, maps represent geographic space in a generalized and abstracted way. Cartographic research is, therefore, concerned with establishing a mutually shared set of signs and semiotic rules to communicate geospatial information successfully. While cartographers generally strive for cognitively congruent maps, empirical research has only started to explore the different facets and levels of correspondences between external cartographic representations and processes of human cognition. This research, therefore, draws attention to the principle of contextual congruence to study the correspondences between shape symbols and different geospatial content. An empirical study was carried out to explore the (in)congruence of cartographic point symbols with respect to positive, neutral, and negative geospatial topics in monothematic maps. In an online survey, 72 thematic maps (i.e., 12 map topics × 6 symbols) were evaluated by 116 participants in a between-groups design. The point symbols comprised five symmetric shapes (i.e., Circle, Triangle, Square, Rhomb, Star) and one Asymmetric Star shape. The study revealed detailed symbol-content congruences for each map topic as well as on an aggregated level, i.e., by positive, neutral, and negative topic clusters. Asymmetric Star symbols generally showed to be highly incongruent with positive and neutral topics, while highly congruent with negative map topics. Symmetric shapes, on the other hand, emerged to be of high congruence with positive and neutral map topics, whilst incongruent with negative topics. As the meaning of point symbols showed to be susceptible to context, the findings lead to the conclusion that cognitively congruent maps require profound context-specific considerations when designing and employing map symbols. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

Open AccessArticle
Developing Versatile Graphic Map Load Metrics
ISPRS Int. J. Geo-Inf. 2020, 9(12), 705; https://doi.org/10.3390/ijgi9120705 - 25 Nov 2020
Abstract
Graphic map load is a property of a map quantifying the amount of map content. It indicates the visual complexity of the map and helps cartographers to adapt maps and other geospatial visualizations to accomplish their purpose. Generally, map design needs to enable [...] Read more.
Graphic map load is a property of a map quantifying the amount of map content. It indicates the visual complexity of the map and helps cartographers to adapt maps and other geospatial visualizations to accomplish their purpose. Generally, map design needs to enable the user to quickly, comprehensively, and intuitively obtain the relevant spatial information from a map. Especially, this applies in cases like crisis management, immunology and military. However, there are no widely applicable metrics to assess the complexity of cartographic products. This paper evaluates seven simple metrics for graphic map load calculation based on image analytics using the set of 50 various maps on an easily understandable scale of 0–100%. The metrics are compared to values of user-perceived map load survey joined by 62 respondents. All the suggested metrics are designed for calculation with easy-accessible software and therefore suitable for use in any user environment. Metrics utilizing the principle of edge detection have been found suitable for a diversity of geospatial visualizations providing the best results among other metrics. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

Open AccessArticle
VisWebDrone: A Web Application for UAV Photogrammetry Based on Open-Source Software
ISPRS Int. J. Geo-Inf. 2020, 9(11), 679; https://doi.org/10.3390/ijgi9110679 - 15 Nov 2020
Abstract
Currently, the use of free and open-source software is increasing. The flexibility, availability, and maturity of this software could be a key driver to develop useful and interesting solutions. In general, open-source solutions solve specific tasks that can replace commercial solutions, which are [...] Read more.
Currently, the use of free and open-source software is increasing. The flexibility, availability, and maturity of this software could be a key driver to develop useful and interesting solutions. In general, open-source solutions solve specific tasks that can replace commercial solutions, which are often very expensive. This is even more noticeable in areas requiring analysis and manipulation/visualization of a large volume of data. Considering that there is a major gap in the development of web applications for photogrammetric processing, based on open-source technologies that offer quality results, the application presented in this article is intended to explore this niche. Thus, in this article a solution for photogrammetric processing is presented, based on the integration of MicMac, GeoServer, Leaflet, and Potree software. The implemented architecture, focusing on open-source software for data processing and for graphical manipulation, visualization, measuring, and analysis, is presented in detail. To assess the results produced by the proposed web application, a case study is presented, using imagery acquired from an unmanned aerial vehicle in two different areas. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
A Simplified Method of Cartographic Visualisation of Buildings’ Interiors (2D+) for Navigation Applications
ISPRS Int. J. Geo-Inf. 2020, 9(6), 407; https://doi.org/10.3390/ijgi9060407 - 26 Jun 2020
Abstract
This article proposes an original method of a coherent and simplified cartographic presentation of the interior of buildings called 2D+, which can be used in geoinformation applications that do not support an extensive three-dimensional visualisation or do not have access to a 3D [...] Read more.
This article proposes an original method of a coherent and simplified cartographic presentation of the interior of buildings called 2D+, which can be used in geoinformation applications that do not support an extensive three-dimensional visualisation or do not have access to a 3D model of the building. A simplified way of cartographic visualisation can be used primarily in indoor navigation systems and other location-based services (LBS) applications. It can also be useful in systems supporting facility management (FM) and various kinds of geographic information systems (GIS). On the one hand, it may increase an application’s efficiency; on the other, it may unify the method of visualisation in the absence of a building’s 3D model. Thanks to the proposed method, it is possible to achieve the same effect regardless of the data source used: Building Information Modelling (BIM), a Computer-aided Design (CAD) model, or traditional architectural and construction drawings. Such a solution may be part of a broader concept of a multi-scale presentation of buildings’ interiors. The article discusses the issues of visualising data and converting data to the appropriate coordinate system, as well as the properties of the application model of data. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Graphical abstract

Open AccessArticle
Multi-Scale Representation of Ocean Flow Fields Based on Feature Analysis
ISPRS Int. J. Geo-Inf. 2020, 9(5), 307; https://doi.org/10.3390/ijgi9050307 - 07 May 2020
Abstract
When it comes to feature retention in multi-scale representations of ocean flow fields, not all data points are equal. Therefore, this paper proposes a method of selecting data points based on their importance. First, an autocorrelation analysis is performed on flow speed and [...] Read more.
When it comes to feature retention in multi-scale representations of ocean flow fields, not all data points are equal. Therefore, this paper proposes a method of selecting data points based on their importance. First, an autocorrelation analysis is performed on flow speed and the rate of change in flow direction. Then, the magnitude of speed and variation in the rate of change in flow direction are classified. Feature regions are determined according to autocorrelation aggregation and classification analysis. Then, rough set theory and evidence theory are applied, using these results to determine the weights of different points. Finally, these weights are used to construct multi-scale representations of ocean flow fields, which effectively retain flow-field characteristics. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Affective Communication of Map Symbols: A Semantic Differential Analysis
ISPRS Int. J. Geo-Inf. 2020, 9(5), 289; https://doi.org/10.3390/ijgi9050289 - 01 May 2020
Cited by 1
Abstract
Maps enable us to relate to spatial phenomena and events from viewpoints far beyond direct experience. By employing signs and symbols, maps communicate about near as well as distant geospatial phenomena, events, objects, or ideas. Besides acting as identifiers, map signs and symbols [...] Read more.
Maps enable us to relate to spatial phenomena and events from viewpoints far beyond direct experience. By employing signs and symbols, maps communicate about near as well as distant geospatial phenomena, events, objects, or ideas. Besides acting as identifiers, map signs and symbols may, however, not only denote but also connote. While most cartographic research has focused on the denoting character of visual variables, research from related disciplines stresses the importance of connotative qualities on affect, cognition, and behavior. Hence, this research focused on the connotative character of map symbols by empirically assessing the affective qualities of shape stimuli. In three stimulus conditions of cartographic and non-cartographic contexts, affective responses towards a set of eight shape stimuli were assessed by employing a semantic differential technique. Overall findings showed that shape symbols lead to, at times, highly distinctive affective responses. Findings further suggest two particular stimulus clusters of affective qualities that prevailed over all stimulus conditions, i.e., a cluster of asymmetric stimuli and a cluster of symmetric stimuli. Between the intersection of psychology, cartography, and semiotics, this paper outlines theoretical perspectives on cartographic semiotics, discusses empirical findings, and addresses implications for future research. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Comparison of Relief Shading Techniques Applied to Landforms
ISPRS Int. J. Geo-Inf. 2020, 9(4), 253; https://doi.org/10.3390/ijgi9040253 - 18 Apr 2020
Cited by 3
Abstract
As relief influences disposition of all the other objects displayed on maps, terrain representation plays one of the key roles in the map creation process. Originally a manual technique, relief shading creates the three-dimensional effect and allows the user to read the terrain [...] Read more.
As relief influences disposition of all the other objects displayed on maps, terrain representation plays one of the key roles in the map creation process. Originally a manual technique, relief shading creates the three-dimensional effect and allows the user to read the terrain in an intuitive way. With the advent of digital elevation models (DEMs) analytical relief shading came into a wider use, since it is faster, requires less effort, and delivers reproducible results. In contrast to manual relief shading, however, it often lacks clarity when representing heterogeneous landscapes with diverse landforms. The aim of this work is to evaluate analytical hillshading methods against a set of landforms within an online survey. The responses revealed that the clear sky model performs best applied to most of the landforms included in the survey, in particular all the mountain and valley types. Cluster shading proved to work well for the mountainous and hilly areas but less so in the depiction of valleys. Texture shading and the multidirectional, oblique-weighted (MDOW) method deliver too much detail for most of the landforms presented. Glaciers were depicted in the best way using the aspect tool. For alluvial fans, the standard relief shading with custom lighting direction proved to work best compared to the other methods. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
A Method for Generating Variable-Scale Maps for Small Displays
ISPRS Int. J. Geo-Inf. 2020, 9(4), 250; https://doi.org/10.3390/ijgi9040250 - 17 Apr 2020
Abstract
With the rapid development of the internet and information technology, visualization techniques for mobile and interactive web maps have developed different requirements. Small screens make it difficult to simultaneously present information details and the surrounding context. Aiming at this problem, this paper proposes [...] Read more.
With the rapid development of the internet and information technology, visualization techniques for mobile and interactive web maps have developed different requirements. Small screens make it difficult to simultaneously present information details and the surrounding context. Aiming at this problem, this paper proposes a novel variable-scale method that can allow users to properly specify the size, shape, and number of the focus area(s). Our method first establishes a hierarchical data structure for representing geographic data and then the client-side can request and represent the information according to only the operational command input by users. Experimental results show that this method can realize the variable-scale representation of real geographic data on a single screen. It can effectively solve the contradiction between a small-screen display and a large quantity of information. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

Open AccessArticle
A High-performance Cross-platform Map Rendering Engine for Mobile Geographic Information System (GIS)
ISPRS Int. J. Geo-Inf. 2019, 8(10), 427; https://doi.org/10.3390/ijgi8100427 - 20 Sep 2019
Abstract
With the diversification of terminal equipment and operating systems, higher requirements are placed on the rendering performance of maps. The traditional map rendering engine relies on the corresponding operating system graphics library, and there are problems such as the inability to cross the [...] Read more.
With the diversification of terminal equipment and operating systems, higher requirements are placed on the rendering performance of maps. The traditional map rendering engine relies on the corresponding operating system graphics library, and there are problems such as the inability to cross the operating system, low rendering performance, and inconsistent rendering style. With the development of hardware, graphics processing unit (GPU) appears in various platforms. How to use GPU hardware to improve map rendering performance has become a critical challenge. In order to address the above problems, this study proposes a cross-platform and high-performance map rendering (Graphics Library engine, GL engine), which uses mask drawing technology and texture dictionary text rendering technology. It can be used on different hardware platforms and different operating systems based on the OpenGL graphics library. The high-performance map rendering engine maintains a consistent map rendering style on different platforms. The results of the benchmark experiments show that the performance of GL engine is 1.75 times and 1.54 times better than the general map rendering engine in the iOS system and in the Android system, respectively, and the rendering performance for vector tiles is 11.89 times and 9.52 times better than rendering in the Mapbox in the iOS system and in the Android system, respectively. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

Back to TopTop