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Abstract: With the extensive application of big spatial data and the emergence of spatial computing,
augmented reality (AR) map rendering has attracted significant attention. A common issue in
existing solutions is that AR-GIS systems rely on different platform-specific graphics libraries on
different operating systems, and rendering implementations can vary across various platforms. This
causes performance degradation and rendering styles that are not consistent across environments.
However, high-performance rendering consistency across devices is critical in AR-GIS, especially for
edge collaborative computing. In this paper, we present a high-performance, platform-independent
AR-GIS rendering engine; the augmented reality universal graphics library (AUGL) engine. A unified
cross-platform interface is proposed to preserve AR-GIS rendering style consistency across platforms.
High-performance AR-GIS map symbol drawing models are defined and implemented based on a
unified algorithm interface. We also develop a pre-caching strategy, optimized spatial-index querying,
and a GPU-accelerated vector drawing algorithm that minimizes IO latency throughout the rendering
process. Comparisons to existing AR-GIS visualization engines indicate that the performance of the
AUGL engine is two times higher than that of the AR-GIS rendering engine on the Android, iOS,
and Vuforia platforms. The drawing efficiency for vector polygons is improved significantly. The
rendering performance is more than three times better than the average performances of existing
Android and iOS systems.

Keywords: AR-GIS; spatial computing; geovisualization; mobile augmented reality; GPU;
parallel technology

1. Introduction

Augmented reality (AR) is an interactive technology that overlays graphical digital
information over the physical world. Its main purpose is to combine real-world and virtual
information in a manner that provides real-time interaction. More precisely, users receive
additional information such as images, sounds, and text that create illusions related to the
real world [1,2].

Current AR technologies tend to provide end users and professionals with accessible
and innovative applications such as entertainment, advertising, and a variety of other
professional applications. Developers can create AR applications that place digital infor-
mation about businesses into a user’s field of view. For example, a digital description of a
building is applied directly to a user’s view. Some AR frameworks such as ARkit, ARCore,
and Vuforia can be used to make the AR experiences more easily available to a wider set
of users and provide registration and tracking techniques. However, it is challenging to
combine AR virtual information with our view of the physical world properly [3]. This
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challenge differs from issues associated with traditional visualization techniques, where the
content to be displayed is well known. To achieve better AR visualization experiences, we
must study the key issues in AR visualization implementations that are targeted towards a
wider audience than the typical audience of researchers and AR experts.

In geographic information science (GIScience) and related domains, combining AR
and GIS to form an augmented reality geospatial information system (AR-GIS) can provide
unique opportunities to enhance spatial experiences. This helps to advance applications
in planning, analysis, urban development, and other geosciences in a transparent and
intuitive way [4,5]. Several studies have shown the high value of AR in earth science.
In post-disaster assessments, AR can measure and interpret damaged structures [6]. In
virtual travel, AR can be used to display a virtual model of a web interface and indoor
and outdoor environments [7,8]. In geoheritage applications, images of four volcanic
geological relics were converted into three-dimensional animations and an AR application
was developed that attracted the interest of young viewers towards earth sciences [9]. AR
can help non-experts to understand processes without first acquiring a heavy professional
background in GIScience [10].

Immersive visualization of geographic data has been used widely in recent years.
Game engines such as Unity3D support spatial data integration and enable the use of
popular AR Software Development Kits (ARKit, ARCore, etc.) to develop spatial AR and
Virtual Reality (VR) applications via extension plugins [11–15]. Traditional GIS vendors
such as ESRI have recently started to integrate AR and VR capabilities into their GIS
products [16–18].

It is important to note that research and development of such applications still focuses
on hardware and software implementations, with less focus on visualization, especially
when hardware-based computing resources are limited [19–21]. Another common defi-
ciency in existing solutions is that AR-GIS systems often rely on various platform-specific
graphics libraries or operating systems and therefore rendering implementations can differ
across various platforms. This leads to performance degradation or rendering styles that
are not consistent across environments. However, consistent high-performance rendering
across devices is critical in AR-GIS, especially for edge collaborative computing.

The main contribution of this paper is the presentation of an efficient, platform-
independent map-rendering framework that uses several visualization algorithms to solve
the issues above. We develop a pre-caching strategy, optimized spatial-index querying,
and a Graphic Processing Unit (GPU)-accelerated vector-drawing algorithm to improve
rendering efficiency. Moreover, we design the cross-platform architecture, including stor-
age, scheduling, and application modules, to provide a consistent AR-GIS rendering style
across platforms.

2. Related Work
2.1. Augmented Reality Visualization

Visualization in AR is concentrated on the mapping from virtual data to visual repre-
sentations. Additionally, it also focuses on spatial relationships and interactions between
the physical world and raw (virtual) data [3]. It determines how to combine the physical
world and virtual data into 3D images, which are then calculated using 3D–2D algorithms
to produce final 2D images. One important aspect of AR visualization is the combina-
tion of real and virtual information. If a traditional visualization pipeline is used for AR
visualization, it should be modified to reflect a combination of real and virtual informa-
tion [11]. Based on continued AR development, Keil et al. [22] revised their initial survey
to highlight how AR systems require a good registration process that can align virtual
and physical objects accurately. Adding registration information to the original pipeline
requires providing camera images that represent the environment in the video-transparent
AR interface, enabling extraction of environmental information captured in the image, and
performing specialized composition steps that reflect the characteristics of AR visualization.
In particular, the original rendering step is replaced with a composition step that addresses
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the need to combine different AR visualization-related source data. In summary, the visual-
ization in AR differs from the traditional visual definition because it uses a combination
of the data to be displayed and information about the user’s actual physical environment.
In this regard, it should be noted that this work deliberately excludes the problems and
challenges of specific AR displays such as space ARs, video transparent displays, and
optically transparent displays. For example, using an optically transparent display to
implement an AR interface presents its own challenges. Issues regarding these specific
displays are discussed in other studies [23,24].

Virtual environment visualization and interaction techniques have been studied in
depth [25–27]. There are several AR-related studies that have outlined the expression and
interaction of virtual data on different platforms [1,20], but work on the classification and
analysis of AR visualization technology in terms of cross-platform consistency is very
limited. There is little work available on cross-platform AR-related visual topics. Willett
et al. [28] defined general AR data representation and representation concepts, and studied
the relationship between data, the physical environment, and data representation. However,
the visualization method depends on the hardware environment of the embedded platform.
Zollmann et al. [3] outlined AR visualization techniques and defined the categories and
methods of common AR representation and these corresponding patterns. However, these
methods lack further performance analysis and cross-platform research. Although they
have deeply summarized of AR visualization technology, there is still no research related to
architectural systems, cross-platform consistency and performance analysis of systematic
research of this domain.

2.2. Augmented Reality and GIS Visualization

As the world’s leading provider of GIS products, Esri has been developing their
Windows-based software product ArcGIS for decades. The map-rendering engine depends
on the Windows graphics device interface (GDI) graphics library. This makes subsequent
cross-platform development difficult [29]. With increasing demand for cross-platform
products, the implementation of map rendering engines for ArcGIS Runtime SDK products
varies between operating systems. Moreover, various operating systems optimize map-
engine performance, resulting in various types of dependence on operating system-specific
optimization algorithms. This is not conducive to producing consistent map-rendering
effects or providing consistent map-rendering performance across platforms.

Specifically, ArcGIS only supports the AR function of 3D scene. It does not support 2D
map visualization (including vectors, image maps, network maps, etc.) in AR. Additionally,
it does not support real-time ground-proximity visualization and AR effects. It does not
support 2D and 3D integrated visualization and real scene associated map visualization for
AR. ArcGIS does not support high-performance AR feature visualization (minimization of
I/O time consumption). Thus, it is difficult to achieve fast display performance without
operational delays. It also does not support multi-cache and parallel graphics processing
unit acceleration. Lag occurs when the ArcGIS map data volume is large [23]. Mapbox AR
does not support 2D and 3D integrated AR map visualization, does not support ground-
proximity visualization, does not support Web browser AR map symbol visualization, and
does not support iOS operating system AR map symbol visualization [11,24].

The Open Graphics Library (OpenGL) is proposed for drawing 2D and 3D vector
graphics. The application programming interface (API) is designed to interact with graphics
processing units (GPUs) for hardware-accelerated rendering [30]. The OpenGL specifi-
cation describes an abstract API that draws 2D and 3D graphics. Although the API has
many language bindings and can be implemented entirely using software, its design is
mainly hardware-based and independent of language and platform. OpenGL supports
AR 2D and 3D integrated rendering, consistent cross-platform rendering, cross-device
and cross-browser hardware acceleration, and unified-style high-volume data batch ren-
dering [29]. Because OpenGL is only a graphical image-rendering library, it focuses on
computer graphics as the basic element of encapsulation. It is not designed for AR-GIS
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map symbolization and mapping, as it does not address packaging of map layers, object
avoidance, map management, or other issues. It also does not include AR map wrappers
for real scene mapping, spatial modeling masking, or other scenarios [31,32]. Therefore, it
is not possible to display large-scale map data directly. It cannot manage map scene data
scheduling, cannot display complex map symbols using text- or annotation-type displays,
does not support virtual building masking display in AR, and does not support accurate
calibration of map symbol data in a real-scale AR display.

3. Materials and Methods

An efficient, platform-independent AR map rendering engine (the augmented-reality
universal graphics library (AUGL) engine) is proposed in this paper. The AUGL map-
rendering engine consists of a variety of GPU-based rendering strategies, including parallel
GPU rendering strategies and cache pool reuse strategies, which are discussed in the
subsequent sections in this chapter.

The AUGL engine integrates various rendering strategies based on the OpenGL
graphics library. It can draw each map layer via the hierarchical rendering method and
save the processed layer results. Finally, it overlays these results to complete the AR map
rendering process.

As a method of connecting applications and operating systems, the AUGL engine
can display spatial objects on a screen without any platform-specified functions. Based
on the OpenGL graph libraries, the AUGL engine is detailed by a unified framework that
formally describes the map symbol drawing approaches and map data exchange interfaces.
The AUGL engine framework is implemented by the OpenGL for Embedded Systems
(OpenGL ES) graphics library in the Android and iOS operating systems, the WebGL
graphics library in Web browsers, and the OpenGL graphics library on Desktop GIS. The
platform-independent specification ensures AUGL engine interoperability and consistency
across different implementations so that users and developers need not worry about the
different characteristics of the underlying hardware platform. All of the graphical mapping
elements (points, lines, polygons, texts, and effects) are drawn in the same manner and
constitute elements of a unified style on every platform. The platform-independent AR
map symbol visualization architecture proposed in this paper is shown in Figure 1.
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3.1. Architecture of the Augmented-Reality Universal Graphics Library Engine

AR map visualization requires the same data set as conventional map visualization,
with dynamic content and metadata information: vector data set, terrain data set, 3D model
with or without texture, point cloud and so on. However, because it mainly processes
the window area data of the current position, it will be relatively light at the data level.
The display content is more complex and lifelike, and the color processing and collection
details of virtual elements achieve the effect of augmented reality visualization. Current
AR devices, especially mobile Augmented Reality, have limited real-time processing power.
In practice, AR-rendered map symbols are always “attached” efficiently and in real time to
the corresponding real objects (ground, walls, top of buildings, river surfaces, underground
surfaces, etc.), which remains a key issue.

In this paper, in order to consider the specific input information from MAR devices,
compared with the traditional classical GIS architecture, our key requirements for AR-
GIS include virtual reality combined rendering of occlusion and visibility processing,
cross platform consistent map rendering, real-time positioning and camera sensing, user
interaction based on pinhole camera model, etc.

Several high-performance spatial computation methods are used to help the AUGL
engine provide an efficient rendering process. First, retrieval is accelerated by using
dynamically updated spatial database index hit technology (a scheduling technique to
improve the retrieval efficiency of spatial index) and dictionary texture caching technology.
Second, map octopus tree dynamic memory cache pool technology is implemented to
update the cache in real time. Update operation is triggered when the geographic range or
stylization of the map symbol data changes.

The modules of AR-GIS rendering engine (AUGL) include a GIS data module, AR map
rendering engine module, perception module, user interaction module, AR map interaction
module, AR map application module and so on. The architecture of this method is shown
in Figure 2.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 5 of 26 
 

 

Figure 1. Platform-independent visualization architecture of AUGL. 

3.1. Architecture of the Augmented-Reality Universal Graphics Library Engine 

AR map visualization requires the same data set as conventional map visualization, 

with dynamic content and metadata information: vector data set, terrain data set, 3D 

model with or without texture, point cloud and so on. However, because it mainly pro-

cesses the window area data of the current position, it will be relatively light at the data 

level. The display content is more complex and lifelike, and the color processing and col-

lection details of virtual elements achieve the effect of augmented reality visualization. 

Current AR devices, especially mobile Augmented Reality, have limited real-time pro-

cessing power. In practice, AR-rendered map symbols are always “attached” efficiently 

and in real time to the corresponding real objects (ground, walls, top of buildings, river 

surfaces, underground surfaces, etc.), which remains a key issue. 

In this paper, in order to consider the specific input information from MAR devices, 

compared with the traditional classical GIS architecture, our key requirements for AR-GIS 

include virtual reality combined rendering of occlusion and visibility processing, cross 

platform consistent map rendering, real-time positioning and camera sensing, user inter-

action based on pinhole camera model, etc. 

Several high-performance spatial computation methods are used to help the AUGL 

engine provide an efficient rendering process. First, retrieval is accelerated by using dy-

namically updated spatial database index hit technology (a scheduling technique to im-

prove the retrieval efficiency of spatial index) and dictionary texture caching technology. 

Second, map octopus tree dynamic memory cache pool technology is implemented to up-

date the cache in real time. Update operation is triggered when the geographic range or 

stylization of the map symbol data changes. 

The modules of AR-GIS rendering engine (AUGL) include a GIS data module, AR 

map rendering engine module, perception module, user interaction module, AR map in-

teraction module, AR map application module and so on. The architecture of this method 

is shown in Figure 2. 

 

Figure 2. Architecture of AUGL.  

The sensing module includes two sub modules: location processing and camera pro-

cessing. The location processing is responsible for estimating the geographical position, 

velocity and direction of objects in 3D through GNSS. In order to estimate position, GNSS 

Figure 2. Architecture of AUGL.

The sensing module includes two sub modules: location processing and camera
processing. The location processing is responsible for estimating the geographical position,
velocity and direction of objects in 3D through GNSS. In order to estimate position, GNSS
uses a set of satellites and ground stations orbiting the earth. At present, four main systems
have been put into use, including GPS of the United States, GLONASS of Russia, Galileo of
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the European Union and Beidou of China. In this paper, AUGL is compatible with the above
four positioning systems and takes advantage of the above GNSS system. Because the
geographical location accuracy of GNSS is affected by many errors, including ionosphere,
building reflection, etc., in order to eliminate these errors, the AUGL positioning module
supports access to the high-precision differential system, uses the most advanced RTK
and PPP technology of precise point positioning, and connects the high-precision receiver
through Bluetooth, which can achieve centimeter-level accuracy. At the same time, in
order to achieve the purpose of low power consumption, strong autonomy and convenient
portability, it supports access to high-precision consumer mobile devices (e.g., Huawei
P40 and mi11 ultra). Without connecting any receiver, the accuracy can reach centimeter
level [33,34]. This is used for positioning and azimuth estimation (3D absolute coordinates,
pitch angle, yaw angle, roll angle). Camera processing is responsible for acquiring 6-DOF
through attitude estimation of equipment motion. During this period, centimeter-level
relative attitude information is obtained in real time according to camera parameters
(mainly external parameter changes). These accurate 6-DOF relative attitude information is
fused with absolute position obtained by location processing to ensure that the equipment
in motion can acquire high-precision coordinate reference in real time, it is a prerequisite
to generate enhanced image to realize the facility of accurately depicting the real world
through AR.

The GIS map data module is responsible for parsing geospatial data in an MAR (mobile
augmented reality) scene into a data format that the AR map rendering engine module
can organize hierarchically. It is mainly responsible for reading, converting, registering
and other parsing operations of spatial data, and encodes the parsing results into a unified
layer data unit of AR map. The data of this module include vectors, rasters, 3D spatial data
(3D vectors,3D networks, voxel grids, etc.), RTSP service, text address data, picture and
video recorded by mobile phone camera or UAV camera, etc. These data types will meet
the conditions of AR map rendering after parsing.

The AR map rendering engine module is used to parse the output of AR map data
module into OpenGL recognizable format, and render the visualization results of corre-
sponding symbol types according to the rules of map stylization. It includes two sub
modules: cross platform OpenGL graphics library and AR map symbol processing. The
cross platform OpenGL graphics library is responsible for unifying the rendering algo-
rithms of multiple language platforms (Android, iOS, Web, unity, etc.), triangulating and
occlusion culling the spatial geometric data, converting all geographic coordinate data
into vertex data in the future, and packaging them into batch cell objects to be drawn. The
AR map stylization sub module is responsible for the batch unit objects output from the
OpenGL graphics library. According to the map rules [35,36], it carries out the stylized
objects such as symbols for area, lines, points, annotations, vector tiles and grid tile sym-
bols and image symbols, and calls on the graphics library API operation to render these
stylized objects as visual data. Finally, the OpenGL state machine is used to control the
data exchange API of the rendering pipeline, and the visualization results are displayed on
the screen.

The AR map interaction module is responsible for calculating and responding to the
interactive operations generated by the user interaction module according to the location
data generated by the positioning and camera module. When combined with AR, the classic
mouse or touchpad controller is replaced by the user movement tracked by AR devices.
Additionally, this kind of map visualization usually needs absolute positioning relative to
the global earth frame, so user interaction needs to accurately handle the absolute attitude of
AR devices. These operations include screen gestures (pitch, zoom in, zoom out, rotate, pan,
select, double-click, capture, magnifying glass, etc.) and customized button commands (local
redraw, global redraw, add, delete, modify, query, geometry edit, etc.). The module supports
the encapsulation of these operations into events, and provides active notification methods.
The combination of these methods can facilitate users to complete tasks.
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3.2. High-Performance AR-GIS Rendering Engine Parallel Computation

The need to visualize large amounts of data in map windows is growing rapidly [37] as
display technologies and devices such as high-definition (HD) mobile screens, large LCD/LED
screens, HD projectors, display walls, and immersive virtual environments are increasingly
used in geospatial applications to visualize large spatial areas with rich details. On the other
hand, the age of big data has made vast amounts of geospatial data widely available for use
in a variety of GIS applications that require real-time or near real-time responses to solve
complicated geographic problems. Therefore, high-performance map visualization is essential
not only for online map services, but also for offline geospatial computing.

In this paper, we use a variety of methods to achieve high-performance spatial com-
puting in the rendering process. On the one hand, spatial database index hit technology
based on dynamic update and dictionary texture cache technology is used to speed up
the retrieval process. On the other hand, in order to update the cache in real time, the
map octopus tree dynamic memory cache pool technology is implemented, and the update
operation is triggered when the geographic range and style of map symbol data change.

3.2.1. AR-GIS Map Symbol Parallel Processing Framework

Parallel computing is an efficient way to process some tasks via multi-threaded or
parallel processes. The computing nodes used in parallel computation are connected via
a network and can achieve parallel data transmission acceleration and computational
efficiency. Parallel GIS technology applies parallel computing technology to parallel
storage, query, retrieval, and processing of massive annotation data, and provides the
ability to process massive spatial geographic data by establishing software systems with
fast response speeds and high operational efficiency. A new generation of multi-core,
parallel high-performance computing integrated with high-performance parallel rendering
computing technology and algorithms has become an area of interest in GIS mapping [38].

In order to take full advantage of the mobile augmented reality (MAR) spatial adaptive
decomposition method, we have developed a rendering parallelization framework for
AR map symbols in multi-core environments (Figure 3). When the first drawing task
is generated, the framework generates multiple data layers for different symbolization
levels based on the original data. These layers include the vector layer, raster layers, text
layers and other layers. The data structure for rendering layers is the symbolic data. It
contains the rendering behaviors and some useful information for drawing geometries and
raster objects (e.g., categories of symbol for spatial data, the collection of coordinates, the
drawing style). Spatial data are acquired for each data level within the current AR viewport
location map, and multiple uniformly distributed grid symbol data are created. These
data are distributed to different drawing sub-threads through the adaptive decomposition
method, and the drawing sub-thread launches the AR map symbol processing, and queries,
retrieves, transforms and renders the corresponding characteristics of the data in the grid.
The drawing results are sent to the shared resource thread for aggregation and stored in
the buffer pool. The shared resource thread is responsible for sending the drawing results
to the main thread when the main thread map is refreshed or when the customizer is
triggered. The main thread loads the sub-image results of these AP maps, and merge all
the sub-image textures into the final view displayed in the AR viewport. Additionally, the
entire process of parallel drawing of AR map symbols is completed.
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The generation and drawing of symbolized data in each grid is completed in the
drawing sub-thread. Therefore, any operation of the main thread will not increase overhead
to the visualization task of the drawing sub-thread. At the same time, since the display
and update of the symbolized data in each grid are completed in the main thread, time-
consuming operations such as query, retrieval, conversion and rendering of the drawing
sub-threads will not increase the amount of calculation to the display of the main thread’s
visualization results.

Moreover, to accelerate application of the coordinate conversion process to large
volumes of AR map symbols, the GPU is used instead of the CPU to perform vertex
transformations of texts. This reduces the time overhead associated with transferring large
amounts of geographic coordinates from the host memory to the GPU device. In this
article, we use multiple subtasks processed by multiple computation units to draw map
symbols in parallel. Examples include transformation of map symbols from geographic
coordinates to OpenGL Render Object [39] in a multi-threaded manner using multiple
CPUs and transformation from a OpenGL Render Object to screen coordinates by using
multiple GPUs (multiple cores) to perform sub-processes and thus reduce computing time.
Although parallel computing has been widely used in GIS software [40–42], this paper
proposes a combined parallel computing method of multi CPU and GPU multi-core to
accelerate the conversion of geographic coordinate data.

The parallelization framework provides a general platform for accelerating the visual-
ization of various map symbol data and for quick responses to real-time map visualization
view interaction requests for large amounts of data.
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3.2.2. High-Speed AR-GIS Map Symbol Cache

Processing of the AR map symbol element visualization style requires extensive
drawing pre-processing time. The AUGL engine provides a map symbol data cache
scheme based on load balancing memory pool technology. Cached data storage and reuse
of cache loading are key to making full use of the cached map symbol data.

Image data caching strategies include horizontal and vertical methods. As shown in
Figure 4A, the image (i, j) in the current view area of layer n is attached to the AR map
windows for map symbol visualization and imported into the cache pool. The surrounding
images (i − 1, j − 1), (i, j − 1), (i + 1, j − 1), (i − 1, j), (i + 1, j), (i − 1, j + 1), (i, j + 1), and (i +
1, j + 1) represent its extension in layer n. In the vertical, (i, j) represents the image of layer
n and the subsequent four graphs indicate that the image of layer n corresponds to the
four images divided by scale parity rules at the n + 1th layer (Figure 4B). Cached images in
layer n − 1 are divided into images according to the same scale rules and only occupy 1/4
of the spatial range of the nth layer (i, j) images.
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During the caching process, it is essential to check for and remove duplicates between
the extended image of the nth layer image (i, j) and other images in layer n, as well as
duplicates between the stretched image of the nth layer image (i, j) and the n − 1th layer
and other extended images. Images in memory are loaded from disk files first and then
exported into the cache pool.

The cached data loading method is shown in Figure 5; the nth layer scale stores all
of the extended images of that layer and layer n−1 stores all of the stretched images that
are smaller than the current scale bar. The n + 1th layer stores all of the stretched images
that are larger than the current scale bar. The images are loaded during the display process
using the texture traversal order: layer n > layer n + 1 > layer n − 1. The exact loading
process is as follows:

(1) The user browses the map to the nth layer and sends a display request to the system.
(2) The system automatically traverses all of the images of the nth layer in the cache pool.

The images are transferred directly to graphics memory for display. Images in the
blank area are overwritten to visualize the latest images in the current area intuitively.

(3) Traversing the image of the n + 1th layer in the cache pool. If an image intersects
the current view area and has a scale bar greater than the current view area, the
texture cache is stretched into the graphics memory for display via texture mapping
technology, overwriting the blank area of the image.

(4) Traversing the n − 1th layer image in the cache pool. If an image intersects the current
view area with a scale less than the current view area, the texture is stretched to the
graphics memory for display via texture mapping technology, overwriting the blank
area of the image.
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(5) Traversal of all images in the nth layer. All images that intersect the current view are
copied to memory, and images of the n + 1th or n − 1th layer are replaced to ensure
that the final displayed image is up-to-date with no remaining stretched images.
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This module of the AUGL engine is used to obtain style information for annotation
initialization, including name, size, font, angle, type, italics, decoration, combination infor-
mation, etc. It also serves to prepare these symbols as a collection of object information to be
drawn for quick acquisition and coordinate transformation when drawing map symbols per
frame. During the map symbol drawing process, the symbol style cache is constructed from
the symbol and thematic layers in the order in which the symbol layers are acquired. The
annotation style caches that are not included in the annotation style memory pool are attached
to the annotation style memory pool via queuing operations. If the number of memory pools
exceeds the upper limit of 256, the update algorithm is automatically performed according
to the annotation of the current viewport and historical browsing record, filtering out the
annotation style cache data to be removed. The number of memory pools online can be
adapted dynamically according to the operating system memory.

When a new map annotation drawing task is launched, the priority is to search for
the annotation style cache in the memory pool. If the same annotation name or style, such
as annotation collection decoration information, is present, it is obtained directly from
the memory pool. This strategy enables a large number of annotation style reuses. For
map zoom browsing with different scales, there are small changes in the generated map
annotations. Most of the annotations can be queried in the memory pool without frequent
updates. In this case, the reuse rates of the name and decoration annotation style are quite
high. For map panning operations in different spatial ranges, the generated map annotation
changes greatly due to fundamental changes in the current viewport display content. New
annotations for drawing are updated frequently. Therefore, memory pools must update
the cache frequently and remove items from the cache in the order that they are created
when the upper limit is exceeded. In this case, the symbol style and font type reuse rates
are high. According to the frequency of symbols appearing in the map browsing process
and symbols in the current viewport to establish a comprehensive evaluation algorithm,
the map symbol style is obtained via the memory pool via key-value pair data organization
and matched to the dictionary texture cache to obtain the specified symbol drawing image
style directly. The entire caching process is shown in Figure 6.
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3.2.3. GPU-Based High-Speed Pre-Processing for OpenGL Render Objects (RO)

Calculating the screen coordinates from the geographic coordinates is the most time-
consuming part of the mobile augmented reality drawing process. First, the specified
geometry of the GIS layer is set, and when it comes to different GIS spatial data, we decide
whether to perform this step in bulk, depending on the amount of data and the character-
istics. Since OpenGL only supports triangles and points and line primitives, we need to
represent GIS geometry as a combination of three basic components before preparing to be
assigned to the OpenGL state machine. According to the principle of OpenGL rendering
pipeline coordinate system transformation, shown in Figure 7, the geographic coordinates
must be transformed into OpenGL render objects (RO) (i.e., model coordinates in the
model coordinate system). These vertex data are then assembled into drawing elements
according to the properties of vertex objects, combined with GIS symbolization rules,
and then cropped to compare the elements with the view of the user’s crop plane and
the model projection matrix, discarding the elements located outside the view and crop
plane. By setting the calculation of OpenGL rendering pipeline matrix transformation,
GIS graphics data are converted into a pixel matrix that can be displayed by the device
screen. The transformation pipeline operates in the following order: model coordinate
system- > world coordinate system- > camera coordinate system- > projection. Finally, the
blanking operation is performed, that is, the obscured objects are cropped to obtain the
window pixel coordinates that the GIS geometry object finally displays. The principle of
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pre-processing AR-GIS geographic coordinates based on OpenGL rendering pipeline is
shown in Figure 7.
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The transformation of the AR map from geographic coordinates to screen coordinates
can be divided into two stages. In the first stage the geographic coordinate system of the
map is obtained and the ellipsoid of the geographic coordinates is determined. AUGL
uses WGS84 by default, and the ellipsoid can also be modified according to the meta-
information of the map. According to the projection coordinate system of the map, the
geometric objects of the map are converted into geometric objects of the specified projection
coordinate system, that is, from geographic coordinates to rectangular coordinates. The
rectangular coordinates of these geometric objects are used as the input coordinates of the
first stage. the data are converted (description information of geometric objects on the
map) to OpenGL state machine parameters. The basic idea is to convert complex geometry
into a combination of three basic elements that OpenGL can render and to accelerate the
time-consuming process of converting map symbol data into vertex data by parallelizing
a multi-threaded calculation. The second stage transforms OpenGL render objects (RO)
into screen coordinates, which is also a time-consuming process [43]. The transformation
of OpenGL render objects (RO) is calculated using the GPU, which is much faster than a
CPU. The structured map symbol data characteristics are preserved so that the map symbol
data can be converted into screen coordinates in bulk and a large number of symbol data
pre-processing mechanisms can be converted in batches.

The mobile augmented reality (MAR) studied in this paper supports the general
mobile GPU hardware architecture. At the same time, we use multithreading to transfer
the opengl rendering objects (RO) of these map symbol data from the host memory to
the global memory on the GPU, which greatly reduces the conversion time of OpenGL
rendering objects (RO) on various smartphones [44].

3.3. The AR-GIS Rendering Engine Map Symbolization Core
3.3.1. The AR-GIS Map Symbol Drawing Model

Correct visualization of the camera display for geographic data in AR-GIS requires
transformation among four coordinate systems including the camera (View Coordinate),
world (World Coodrinate), model (Model Coordinate), and screen pixel (Screen Coordi-
nate) coordinate systems. These are used to depict the geometries of the added virtual
shapes. Because the world coordinate system and the camera coordinates are right-handed
coordinate systems without deformation, rigid body transformation can be used to convert
them from coordinates under the world coordinate system to coordinates under the camera
coordinate system. This addresses the rotation and translation of a geometric object in
3D space when the object does not deform. The camera coordinates obtained via rigid
body transformation and through perspective projection are transformed into coordinates
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under the image coordinate system [45,46] and then converted to camera display pixels
depending on screen coordinate system displacement. The transformation relationships
between the four coordinate systems are shown in Figure 7.

In the actual AR map conventional visualization operation, the main scene includes
two kinds of coordinate transformation from the world coordinate system to the screen
pixel coordinate system and its inverse transformation. In the special operations, such as
occlusion elimination and other scenes, several of the four coordinate systems need to be
transformed to each other. The transformation relationships between the four coordinate
systems are shown in Figure 8.
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Based on the principle of computer vision camera imaging [47], the transformation
relationship equations between the camera, world, model, and screen pixel coordinate
systems [48] are shown in Equation (1). Using these four coordinate systems, a point in the
world coordinate system can be transformed into a point in the pixel coordinate system.
This allows the map symbol data to be drawn accurately in any location and toward the
attitude in the MAR.
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Based on the above description, we describe the geographic visualization methods
used to create the MAR, as well as the final mapping results, which are integrated into a
mobile app (Figure 9). To enhance 3D geographic visualization, we use mapping products
such as SMWU (Map document format of SuperMap software) and MXD (Map document
format of ArcGIS software) to build a two and three-dimensional integrated symbol model
by adding layers, which are rearranged into an image-vector-3D grid-effect map. Unified
coordinate references, interactive gestures, and display projection algorithms manage the
scheduling and final rendering of large amounts of data.
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Visualization of map symbols in indoor augmented reality.

3.3.2. AR Vector Feature Triangulation Rendering

Triangulation of point sets can be used as an important computer graphics pre-
processing technique. In particular, many geometric diagrams of point sets such as Voronoi,
EMST tree, and Gabriel diagrams are related to Delaunay triangulations. Delaunay trian-
gulations have several important features: maximization of the minimum angle, “closest to
regularized” triangulation, and uniqueness (any four points cannot be co-circled). These
features can be used to plot the geometry of any shape accurately and rigorously. The
relevant mathematical equation [49] is shown in Equation (2):∣∣∣∣∣∣∣∣∣
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Popular mapping engine libraries with hardware acceleration including OpenGL and
Direct3D support drawing of any polygons based on Delaunay triangulation. Figure 10
shows that there are usually two types of OpenGL geometric primitives. One is the triangle
geometric primitive and the other is the triangle fan primitive. We represent the vertex
set to be drawn by OpenGL by V1–V6. Based on this principle. The application of the
two methods of drawing map symbols in AR-GIS is shown in Figure 11. We represent a
consecutive polyline by three points (Pn − 1, Pn and Pn + 1).
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constructed by triangular strip; (b) smooth line node constructed by triangular fan.

When drawing map symbols, the system reads the current location and direction
based on the built-in inertial augmented reality odometer. It then prepares to calculate map
symbol data that represent the geographical extent of the specified viewport, as provided
by a series of geographic point sequences. A distinction is drawn regarding realistic camera
pictures to indicate representation of cartographic information regarding the current reality
space. This expression systematically calculates the virtual position of the map symbol
in the current viewport relative to the fictitious origin within the camera virtual space.
The corresponding graphic matrix rotates, transforms, shifts, and scales the coordinate
collection and orientation of this map symbol relative to the current position, thus allowing
the map symbol to be viewed from the camera angle eventually. Within each video frame
in the MAR camera viewport (the calculation time requirement is limited to 35 ms), a 3D
transformation of the symbolized map data must be completed so that the map symbol is
continuously within the observer’s view for real-time responses. This supports permanent
position changes. Therefore, the system requires that large data mass element units be
drawn in quick batches that are split into a series of triangles via triangulation, as shown
in Figure 12a,b. These are characterized by rapid transformation using parallelization
algorithms with GPUs that exceed thousands of computing cores.
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3.3.3. AR Stereoscopic Masking Culling

Displaying spatial objects in 3D space often causes rendering problems due to complex
spatial locations and relationships [50]. In all MAR visualization components, masked
display is an issue that must be solved in the AR application scene. Virtual objects are
always placed in the foreground of incoming video images, but the user is able to view the
observed area without constraints depending on the real-time spatial location relationship
between the user’s camera location and the AR spatial data. As a result, the real location of
the virtual visual model is sometimes behind or in front of the real building. If this masking
relationship is not analyzed correctly, rendering does not produce a reasonable image. The
principle of OpenGL depth testing and masking [51] is shown in Figure 13.
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Figure 13. A mask test performed using an OpenGL depth buffer (A indicates visible geometry;
B indicates testing with OpenGL; and C indicates testing with other software methods).

In this paper, masking technology and virtual geographic data such as depth are used
to mask real objects. This simplifies the 3D mask models of textures and textured buildings
and mixes it into the visual model via alpha channels. If there is no occlusion of the virtual
visual model and 3D mask in the user’s camera viewport, these 3D masks do not affect the
visualization results. In contrast, if the 3D mask is placed in a visual model with a mask,
the former visually removes the obscured part and displays it through a backward video
image. This process is shown in Figure 14. Taking the user’s on-site inspection in urban
planning as an example, after accurate augmented reality positioning and orientation,
determine the actual display area of GIS 3D data in the video, realize the accurate matching
of 3D facilities (such as the well cover in this example) and realistic objects through depth
and masking technology, and after matching, view the underground part of the actual
object by parameterizing the depth and masking, and obtain the invisible properties of the
original space entity.
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4. Experiments and Results
4.1. Experiments Design

In this study, we selected the full feature vector map data for a performance test to
simulate the way users typically interact with the AR-GIS application. The test assumes
that the AR-GIS application has typical user behavior. In the experimental method, to verify
the high performance, practicality, and effectiveness of our approach, we implemented
the rendering scheme introduced in Section 2 using C++ and the OpenGL library with
ARCore on Android and ARKit on iOS. The study used national map data (the scale of
Chinese data is less than 1:1 million and the scale of Beijing data is more than 1:1 million)
with a total of 268 layers. The data source was OpenStreetMap. The total data set size was
30.25 GB. GIS mapping uses various map symbols. The basic types include dot sym-
bols (solid dot, symbol point), line symbols (solid single lines, solid color wide lines,
symbol lines), area symbol (solid fill polygon, symbol polygon), annotations, text, grids,
CAD symbol, 3D symbols and animated symbols. Experiments were conducted on these
13 common types of map symbols.

4.2. Time Test of Single AR Map Visualization

To verify the adaptability and robustness of our rendering algorithm in various actual
data types, we then compare the time required by each algorithm’s subprocess (Table 1)
and test validation under the current ArcGIS scenario geographic range load. The average
time spent on map queries in the AR camera viewport is less than 18 ms, the average
time required for the map symbols to draw to the texture cache is less than 30 ms, and the
average time for texture cache to perform interactive drawing to the viewport screen is
less than 24 ms. The total average time is approximately 60 ms. The map symbol drawing
method based on the dynamic distributed rendering algorithm designed in this study
consumes little time and can complete the drawing tasks efficiently.
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Table 1. Sub process time test of various rendering algorithms.

Map Symbol Type
AR Camera

Viewport Map
Query

Map Symbols Drawn
to the Texture Cache

Interactive
Rendering of

Result

Total
Rendering Time Lags

Points (500
features) 15 ms 25 ms 14 ms 54 ms Running

smoothly

Lines (500 features) 16 ms 21 ms 13 ms 50 ms Running
smoothly

Polygons (500
features) 18 ms 24 ms 10 ms 52 ms Running

smoothly
Annotations (200

features) 14 ms 29 ms 15 ms 58 ms No obvious lag

4.3. Comparison Test of AR Map Visualization

By applying the adaptive decomposition method when facing the camera viewport,
AUGL can model the camera viewport drawing task dynamically based on the amount of
rendering data in the geographic range of the AR map. It generates a list of drawing tasks
that covers all feature types in the AR map, and renders the symbols in real time based on
spatial index queries and spatial relationship judgment. For the four symbol types (points,
lines, polygons, and annotations), we compare the operating efficiencies (time consumed
in ms) of the three drawing algorithms (Table 2). For all four symbol types, the average
drawing time needed by the dynamic distributed rendering algorithm proposed in this
paper is less than 60 ms. The average drawing time needed by the ArcGIS runtime AR
drawing algorithm exceeds 80 ms and the average drawing time needed by the Mapbox
AR drawing algorithm exceeds 100 ms. The AR map symbol drawing system proposed in
this paper is significantly faster than the other two algorithms.

Table 2. Comparison of the efficiencies of three rendering engine drawing algorithms.

Map Symbol Type AUGL Engine ArcGIS Runtime
AR Rendering

Mapbox
AR Rendering

Battery Power Consumption Ratio
(AUGL/ArcGIS/Mapbox)

Points (500 features) 37 ms 55 ms 89 ms 1:1.12:1.17
Lines (500 features) 45 ms 53 ms 117 ms 1:1.15:1.13

Polygons (500 features) 41 ms 62 ms 106 ms 1:1.1:1.16
Annotations (200

features) 48 ms 67 ms 109 ms 1:1.13:1.15

To compare the performance characteristics of the AUGL engine and the other two
algorithms with regard to battery power consumption, we shut down all other applications
on the device and allowed the application to draw points, lines, polygons, and annotations.
We recorded the progress of the three rendering algorithms from 100% battery to 90%.
The AUGL engine algorithm reduces frequent CPU and GPU resource consumption and
improves battery power consumption.

We then compared the average time required by each algorithm’s subprocess (Table 1)
and test validation under the current AR-GIS scenario geographic range load. The average
time spent on map queries in the AR camera viewport is less than 18 ms, the average
time required for the map symbols to draw to the texture cache is less than 30 ms, and the
average time for texture cache to perform interactive drawing to the viewport screen is
less than 24 ms. The total average time is approximately 60 ms. The map symbol drawing
method based on the dynamic distributed rendering algorithm designed in this study
consumes little time and can complete the drawing tasks efficiently.
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4.4. Consistency Test of AR Visualization Cross Platform Algorithm

In addition, we compared the algorithmic consistency of the three drawing engines across
platforms. OpenGL supports 2D and 3D integrated vector and raster graphics rendering,
and supports cross language and cross platform graphics processing unit (GPU) interactive
processing. In this paper, AR map symbol visualization is designed on the basis of a multi-
language OpenGL graphics library. It supports map symbolization algorithms and runs on
Android, iOS, web browser and other platforms through cross language graphics rendering. It
also supports cross language hardware accelerated rendering, which is obviously reflected in
the effect comparison experiment of cross platform algorithm consistency. In the experiment,
we compared consistency performance of the smoothed line connection, smoothed line
endpoint, annotation auto avoidance display, real-time ground display and occlusion culling
display [52,53] of three AR rendering engine algorithms (Table 3). The algorithm can support
the various symbol types in the table across platforms and provide smooth display. However,
Mapbox does not support line endpoint and line junction consistency. The ArcGIS runtime
does not support flow annotation or annotation auto-avoidance consistency. As shown in
Figure 15, the AUGL linear symbol algorithm is shown to be presented consistently in three
cross-platform environments. Figure 16 shows the AUGL polygon symbol algorithm being
presented consistently in three cross-platform environments.

Table 3. Comparison of the consistency performance of three rendering engine drawing algorithms.

AR-GIS
Engine

Smoothed Line
Connection

Smoothed Line
Endpoint

Annotation Auto
Avoidance

Display

Real-Time
Ground Display

Occlusion Culling
Display

Android (ArcGIS) Not supported Not supported Partially
supported Not supported Not supported

iOS (ArcGIS) Not supported Not supported Partially
supported Not supported Not supported

WebAR (ArcGIS) Not supported Not supported Not supported Not supported Not supported

Android (Mapbox) Supported Supported Partially
supported Supported Not supported

iOS (Mapbox) Not supported Not supported Partially
supported Not supported Not supported

WebAR (Mapbox) Not supported Not supported Not supported Not supported Not supported
Android (AUGL) Supported Supported Supported Supported Supported

iOS (AUGL) Supported Partially
supported Supported Supported Supported

WebAR (AUGL) Supported Supported Supported Supported Partially
supported

Finally, we compared the visualization of route symbols produced using the AUGL,
ArcGIS, and Mapbox AR rendering engines to support AR navigation. The method pro-
posed in this paper is based on cross-platform OpenGL matrix conversion technology. It
can identify ground depth information in real time, support drawing of AR guide route
parameters in real time, and draw a guiding route when AR navigation is attached to
the ground consistently. This visualization approach works better on the human eye
sensory system and improves the real-time response capabilities of the AR map system
and environment [31]. The above content is shown in Figure 17. We visually compare
the visualization results of the AR rendering engine. In addition, in order to verify the
usability and visualization effect of AUGL engine in all kinds of GIS data, we test the AR
visualization of common GIS data in corresponding environments, and verify it from the
perspective of user experience. Figure 18 summarizes the AR visualization test results of
four map data types.
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Comparisons show the map symbol rendering framework that is based on the dynamic
distributed rendering algorithm and combined with the cross-platform OpenGL engine
consumes little time and can achieve efficient map symbol rendering in the field of mobile
augmented reality.

5. Conclusions and Further Work

This paper proposes a cross-platform rendering framework, the AUGL engine, for
rendering of high-performance map symbols in mobile augmented reality implementations.
To resolve difficulties with efficient rendering of mobile augmented reality map symbols
consistently across different platforms, the AUGL engine utilized parallel graphics accel-
eration hardware and innovative AR rendering algorithms to achieve high-performance
rendering. A stylized map symbol rendering correction algorithm was used to achieve a
consistent map symbol rendering style across different platforms.

Based on the AUGL engine, we developed AR map applications consisting of AR
service components and mobile prototype components. Experiments in the fourth chapter
of this paper demonstrated the following: (i) the use of a consistent, cross-platform AR map
symbol rendering method, consistent performance across different operating systems, and
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better results; (ii) that the AUGL engine with a variety of innovative rendering algorithms
improves performance by an average of more than two times compared to other AR map
engines and provides a vector polygon symbol performance improvement of near three
times (take mapbox AR as an example); (iii) that the GPU pre-cache rendering method
reduces battery power consumption; and (iv) that asynchronous interactive rendering
reduces the AR real-time response overload and overall wait time.

In the future, we plan to experiment with a more flexible, incremental, cross-platform
adaptive decomposition approach to large, long-term AR map visualization tasks at the
city level [3,54–56]. In addition, we plan to introduce a technology that supports cache
fault tolerance in mobile environments and allows devices to connect intermittently and
make better use of distributed cache resources.

In MAR, in addition to two natural interaction methods through the interactive
operation of the user’s screen and the body motion operation of the mobile camera, we
will study more manners in which users can actively choose constraints for map use
and exploration, such as AR glasses. For example, the user can manipulate the map
through AR glasses combined with physical touch constraints. With the development of AI
technology and spatial computing technology, computer vision scene understanding is also
an important topic for future work. With the development of MAR software and hardware,
the accuracy of visual inertial navigation positioning is becoming higher and higher. The
use of AR self-positioning technology combined with GIS semantic understanding to
study indoor tools such as indoor surveying and mapping or interior design is expected to
achieve better results. For example, users carrying a mobile phone while walking around
the museum to obtain a 3D digital map, not just point cloud data. In the future, we plan to
conduct research in this area.
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