Special Issue "Integrated human exposure to air pollution"

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601). This special issue belongs to the section "Environmental Science and Engineering".

Deadline for manuscript submissions: 2 June 2020.

Special Issue Editors

Dr. Nuno Canha
Website
Guest Editor
1) Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
2) CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
Interests: indoor air quality; air pollution; aerosols, indoor sources; source apportionment; ventilation; sleep; biomonitoring
Dr. Susana Marta Almeida
Website
Guest Editor
Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portuga
Interests: Atmospheric pollution and chemistry; indoor air quality; aerosol particles; exposure assessment; source apportionment; receptor models; air quality management
Dr. Evangelia Diapouli
Website
Guest Editor
National Centre for Scientific Research “Demokritos”, 15341 Ag. Paraskevi, Attiki, Greece
Interests: aerosol physico-chemical properties; indoor air quality; source apportionment; occupational exposure

Special Issue Information

Dear Colleagues,

Air pollution is one of the major environmental health problems that people face nowadays, affecting everyone in the world. The World Health Organization has estimated that, in 2016, ambient air pollution caused 4.2 million premature deaths worldwide, in both cities and rural areas, while household air pollution caused 3.8 million deaths, mainly in low and middle-income countries.

Usually, citizen exposure to air pollutants is calculated based only on concentrations of pollutants monitored using air quality monitoring stations from environment national agencies. These monitoring stations focus on outdoor air quality and, most of them, are located in urban centres. However, this approach fails to account for all components of exposure since:

  • There is a high variability of air pollutant concentrations within a city, depending on the city topography and the existence (or not) of specific pollution sources (such high traffic areas);
  • The time–activity patterns and the use of spaces is very heterogeneous within the population;
  • People spend around 90% of their time in indoor environments.

Therefore, human exposure during a full day cannot be reflected only by outdoor exposure and should consider all micro-environments where individuals spend their time (e.g., home, workplace, transports, leisure, and others) and the time spent in them.

The characterization of indoor and outdoor environments is essential to understand the integrated human exposure to air pollutants. With this Special Issue, we invite colleagues to contribute to increase the knowledge about human exposure in different micro-environments, specific exposures that individuals are under when performing specific tasks, methodologies to understand pollution sources and their impact on indoor and ambient air quality, with the main aim of developing the most effective mitigation measures to decrease human exposure and protect public health.

Dr. Nuno Canha
Dr. Susana Marta Almeida
Dr. Evangelia Diapouli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Air pollution
  • Assessment and modelling
  • Biomass burning
  • Chemical pollutants
  • Economic impacts and policies
  • Epidemiology
  • Exposome
  • Household air pollution
  • Human exposure
  • Human health
  • Health risk assessment
  • Indoor air pollution
  • Low cost sensors
  • Pollution mixtures
  • Source apportionment
  • Toxicity
  • Ventilation

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Passive Exposure to Pollutants from a New Generation of Cigarettes in Real Life Scenarios
Int. J. Environ. Res. Public Health 2020, 17(10), 3455; https://doi.org/10.3390/ijerph17103455 - 15 May 2020
Abstract
The use of electronic cigarettes (e-cigarettes) and heat-not-burn tobacco (HNBT), as popular nicotine delivery systems (NDS), has increased among adult demographics. This study aims to assess the effects on indoor air quality of traditional tobacco cigarettes (TCs) and new smoking alternatives, to determine [...] Read more.
The use of electronic cigarettes (e-cigarettes) and heat-not-burn tobacco (HNBT), as popular nicotine delivery systems (NDS), has increased among adult demographics. This study aims to assess the effects on indoor air quality of traditional tobacco cigarettes (TCs) and new smoking alternatives, to determine the differences between their potential impacts on human health. Measurements of particulate matter (PM1, PM2.5 and PM10), black carbon, carbon monoxide (CO) and carbon dioxide (CO2) were performed in two real life scenarios, in the home and in the car. The results indicated that the particle emissions from the different NDS devices were significantly different. In the home and car, the use of TCs resulted in higher PM10 and ultrafine particle concentrations than when e-cigarettes were smoked, while the lowest concentrations were associated with HNBT. As black carbon and CO are released by combustion processes, the concentrations of these two pollutants were significantly lower for e-cigarettes and HNBT because no combustion occurs when they are smoked. CO2 showed no increase directly associated with the NDS but a trend linked to a higher respiration rate connected with smoking. The results showed that although the levels of pollutants emitted by e-cigarettes and HNBT are substantially lower compared to those from TCs, the new smoking devices are still a source of indoor air pollutants. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
How Has the Hazard to Humans of Microorganisms Found in Atmospheric Aerosol in the South of Western Siberia Changed over 10 Years?
Int. J. Environ. Res. Public Health 2020, 17(5), 1651; https://doi.org/10.3390/ijerph17051651 - 03 Mar 2020
Abstract
One of the most important components of atmospheric aerosols are microorganisms. Therefore, it is necessary to assess the hazard to humans, both from individual microorganisms which are present in atmospheric bioaerosols as well as from their pool. An approach for determining the hazard [...] Read more.
One of the most important components of atmospheric aerosols are microorganisms. Therefore, it is necessary to assess the hazard to humans, both from individual microorganisms which are present in atmospheric bioaerosols as well as from their pool. An approach for determining the hazard of bacteria and yeasts found in atmospheric bioaerosols for humans has previously been proposed. The purpose of this paper is to compare our results for 2006–2008 with the results of studies obtained in 2012–2016 to identify changes in the characteristics of bioaerosols occurring over a decade in the south of Western Siberia. Experimental data on the growth, morphological and biochemical properties of bacteria and yeasts were determined for each isolate found in bioaerosol samples. The integral indices of the hazards of bacteria and yeast for humans were constructed for each isolate based on experimentally determined isolate characteristics according to the approach developed by authors in 2008. Data analysis of two datasets showed that hazard to humans of culturable microorganisms in the atmospheric aerosol in the south of Western Siberia has not changed significantly for 10 years (trends are undistinguishable from zero with a confidence level of more than 95%) despite a noticeable decrease in the average annual number of culturable microorganisms per cubic meter (6–10 times for 10 years). Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Graphical abstract

Open AccessArticle
Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks
Int. J. Environ. Res. Public Health 2020, 17(5), 1563; https://doi.org/10.3390/ijerph17051563 - 28 Feb 2020
Abstract
Road dust resuspension, especially the particulate matter fraction below 10 µm (PM10), is one of the main air quality management challenges in Europe. Road dust samples were collected from representative streets (suburban and urban) of the city of Viana do Castelo, [...] Read more.
Road dust resuspension, especially the particulate matter fraction below 10 µm (PM10), is one of the main air quality management challenges in Europe. Road dust samples were collected from representative streets (suburban and urban) of the city of Viana do Castelo, Portugal. PM10 emission factors (mg veh−1 km−1) ranging from 49 (asphalt) to 330 (cobble stone) were estimated by means of the United Stated Environmental Protection Agency method. Two road dust fractions (<0.074 mm and from 0.0074 to 1 mm) were characterised for their geochemical, mineralogical and morphological properties. In urban streets, road dusts reveal the contribution from traffic emissions, with higher concentrations of, for example, Cu, Zn and Pb. In the suburban area, agriculture practices likely contributed to As concentrations of 180 mg kg−1 in the finest road dust fraction. Samples are primarily composed of quartz, but also of muscovite, albite, kaolinite, microcline, Fe-enstatite, graphite and amorphous content. Particle morphology clearly shows the link with natural and traffic related materials, with well-formed minerals and irregular aggregates. The hazard quotient suggests a probability to induce non-carcinogenic adverse health effects in children by ingestion of Zr. Arsenic in the suburban street represents a human health risk of 1.58 × 10−4. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
Short-Term Effect of Air Pollution on Tuberculosis Based on Kriged Data: A Time-Series Analysis
Int. J. Environ. Res. Public Health 2020, 17(5), 1522; https://doi.org/10.3390/ijerph17051522 - 27 Feb 2020
Abstract
Tuberculosis (TB) has a very high mortality rate worldwide. However, only a few studies have examined the associations between short-term exposure to air pollution and TB incidence. Our objectives were to estimate associations between short-term exposure to air pollutants and TB incidence in [...] Read more.
Tuberculosis (TB) has a very high mortality rate worldwide. However, only a few studies have examined the associations between short-term exposure to air pollution and TB incidence. Our objectives were to estimate associations between short-term exposure to air pollutants and TB incidence in Wuhan city, China, during the 2015–2016 period. We applied a generalized additive model to access the short-term association of air pollution with TB. Daily exposure to each air pollutant in Wuhan was determined using ordinary kriging. The air pollutants included in the analysis were particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5), PM with an aerodynamic diameter less than or equal to 10 micrometers (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ground-level ozone (O3). Daily incident cases of TB were obtained from the Hubei Provincial Center for Disease Control and Prevention (Hubei CDC). Both single- and multiple-pollutant models were used to examine the associations between air pollution and TB. Seasonal variation was assessed by splitting the all-year data into warm (May–October) and cold (November–April) seasons. In the single-pollutant model, for a 10 μg/m3 increase in PM2.5, PM10, and O3 at lag 7, the associated TB risk increased by 17.03% (95% CI: 6.39, 28.74), 11.08% (95% CI: 6.39, 28.74), and 16.15% (95% CI: 1.88, 32.42), respectively. In the multi-pollutant model, the effect of PM2.5 on TB remained statistically significant, while the effects of other pollutants were attenuated. The seasonal analysis showed that there was not much difference regarding the impact of air pollution on TB between the warm season and the cold season. Our study reveals that the mechanism linking air pollution and TB is still complex. Further research is warranted to explore the interaction of air pollution and TB. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
Quantifying the Health Burden Misclassification from the Use of Different PM2.5 Exposure Tier Models: A Case Study of London
Int. J. Environ. Res. Public Health 2020, 17(3), 1099; https://doi.org/10.3390/ijerph17031099 - 09 Feb 2020
Abstract
Exposure to PM2.5 has been associated with increased mortality in urban areas. Hence, reducing the uncertainty in human exposure assessments is essential for more accurate health burden estimates. Here, we quantified the misclassification that occurred when using different exposure approaches to predict [...] Read more.
Exposure to PM2.5 has been associated with increased mortality in urban areas. Hence, reducing the uncertainty in human exposure assessments is essential for more accurate health burden estimates. Here, we quantified the misclassification that occurred when using different exposure approaches to predict the mortality burden of a population using London as a case study. We developed a framework for quantifying the misclassification of the total mortality burden attributable to exposure to fine particulate matter (PM2.5) in four major microenvironments (MEs) (dwellings, aboveground transportation, London Underground (LU) and outdoors) in the Greater London Area (GLA), in 2017. We demonstrated that differences exist between five different exposure Tier-models with incrementally increasing complexity, moving from static to more dynamic approaches. BenMap-CE, the open source software developed by the U.S. Environmental Protection Agency, was used as a tool to achieve spatial distribution of the ambient concentration by interpolating the monitoring data to the unmonitored areas and ultimately estimating the change in mortality on a fine resolution. Indoor exposure to PM2.5 is the largest contributor to total population exposure concentration, accounting for 83% of total predicted population exposure, followed by the London Underground, which contributes approximately 15%, despite the average time spent there by Londoners being only 0.4%. After incorporating housing stock and time-activity data, moving from static to most dynamic metric, Inner London showed the highest reduction in exposure concentration (i.e., approximately 37%) and as a result the largest change in mortality (i.e., health burden/mortality misclassification) was observed in central GLA. Overall, our findings showed that using outdoor concentration as a surrogate for total population exposure but ignoring different exposure concentration that occur indoors and time spent in transit, led to a misclassification of 1174–1541 mean predicted mortalities in GLA. We generally confirm that increasing the complexity and incorporating important microenvironments, such as the highly polluted LU, could significantly reduce the misclassification of health burden assessments. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy
Int. J. Environ. Res. Public Health 2020, 17(3), 1088; https://doi.org/10.3390/ijerph17031088 - 08 Feb 2020
Abstract
Most urban areas of the Po basin in the North of Italy are persistently affected by poor air quality and difficulty in disposing of airborne pollutants. In this context, the municipality of Milan started a multi-year progressive policy based on an extended limited [...] Read more.
Most urban areas of the Po basin in the North of Italy are persistently affected by poor air quality and difficulty in disposing of airborne pollutants. In this context, the municipality of Milan started a multi-year progressive policy based on an extended limited traffic zone (Area B). Starting on 25 February 2019, the first phase partially restricted the circulation of some classes of highly polluting vehicles on the territory, in particular, Euro 0 petrol vehicles and Euro 0 to 3 diesel vehicles, excluding public transport. This is the early-stage of a long term policy that will restrict access to an increasing number of vehicles. The goal of this paper is to evaluate the early-stage impact of this policy on two specific vehicle-generated pollutants: total nitrogen oxides (NO x ) and nitrogen dioxide (NO 2 ), which are gathered by Lombardy Regional Agency for Environmental Protection (ARPA Lombardia). We use a statistical model for time series intervention analysis based on unobservable components. We use data from 2014 to 2018 for pre-policy model selection and the relatively short period up to September 2019 for early-stage policy assessment. We include weather conditions, socio-economic factors, and a counter-factual, given by the concentration of the same pollutant in other important neighbouring cities. Although the average concentrations reduced after the policy introduction, this paper argues that this could be due to other factors. Considering that the short time window may be not long enough for social adaptation to the new rules, our model does not provide statistical evidence of a positive policy effect for NO x and NO 2 . Instead, in one of the most central monitoring stations, a significant negative impact is found. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
Personal Exposure Estimates via Portable and Wireless Sensing and Reporting of Particulate Pollution
Int. J. Environ. Res. Public Health 2020, 17(3), 843; https://doi.org/10.3390/ijerph17030843 - 29 Jan 2020
Abstract
Low-cost, portable particle sensors (n = 3) were designed, constructed, and used to monitor human exposure to particle pollution at various locations and times in Lubbock, TX. The air sensors consisted of a Sharp GP2Y1010AU0F dust sensor interfaced to an Arduino Uno R3, [...] Read more.
Low-cost, portable particle sensors (n = 3) were designed, constructed, and used to monitor human exposure to particle pollution at various locations and times in Lubbock, TX. The air sensors consisted of a Sharp GP2Y1010AU0F dust sensor interfaced to an Arduino Uno R3, and a FONA808 3G communications module. The Arduino Uno was used to receive the signal from calibrated dust sensors to provide a concentration (µg/m3) of suspended particulate matter and coordinate wireless transmission of data via the 3G cellular network. Prior to use for monitoring, dust sensors were calibrated against a reference aerosol monitor (RAM-1) operating independently. Sodium chloride particles were generated inside of a 3.6 m3 mixing chamber while the RAM-1 and each dust sensor recorded signals and calibration was achieved for each dust sensor independently of others by direct comparison with the RAM-1 reading. In an effort to improve the quality of the data stream, the effect of averaging replicate individual pulses of the Sharp sensor when analyzing zero air has been studied. Averaging data points exponentially reduces standard deviation for all sensors with n < 2000 averages but averaging produced diminishing returns after approx. 2000 averages. The sensors exhibited standard deviations for replicate measurements of 3–6 µg/m3 and corresponding 3σ detection limits of 9–18 µg/m3 when 2000 pulses of the dust sensor LED were averaged over an approx. 2 min data collection/transmission cycle. To demonstrate portable monitoring, concentration values from the dust sensors were sent wirelessly in real time to a ThingSpeak channel, while tracking the sensor’s latitude and longitude using an on-board Global Positioning System (GPS) sensor. Outdoor and indoor air quality measurements were made at different places and times while human volunteers carried sensors. The measurements indicated walking by restaurants and cooking at home increased the exposure to particulate matter. The construction of the dust sensors and data collected from this research enhance the current research by describing an open-source concept and providing initial measurements. In principle, sensors can be massively multiplexed and used to generate real-time maps of particulate matter around a given location. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
The Relationship Between the Actual Level of Air Pollution and Residents’ Concern about Air Pollution: Evidence from Shanghai, China
Int. J. Environ. Res. Public Health 2019, 16(23), 4784; https://doi.org/10.3390/ijerph16234784 - 28 Nov 2019
Cited by 1
Abstract
This study explored the relationship between the actual level of air pollution and residents’ concern about air pollution. The actual air pollution level was measured by the air quality index (AQI) reported by environmental monitoring stations, while residents’ concern about air pollution was [...] Read more.
This study explored the relationship between the actual level of air pollution and residents’ concern about air pollution. The actual air pollution level was measured by the air quality index (AQI) reported by environmental monitoring stations, while residents’ concern about air pollution was reflected by the Baidu index using the Internet search engine keywords “Shanghai air quality”. On the basis of the daily data of 2068 days for the city of Shanghai in China over the period between 2 December 2013 and 31 July 2019, a vector autoregression (VAR) model was built for empirical analysis. Estimation results provided three interesting findings. (1) Local residents perceived the deprivation of air quality and expressed their concern on air pollution quickly, within the day on which the air quality index rose. (2) A decline in air quality in another major city, such as Beijing, also raised the concern of Shanghai residents about local air quality. (3) A rise in Shanghai residents’ concern had a beneficial impact on air quality improvement. This study implied that people really cared much about local air quality, and it was beneficial to inform more residents about the situation of local air quality and the risks associated with air pollution. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Figure 1

Open AccessArticle
The Use of the Internet of Things for Estimating Personal Pollution Exposure
Int. J. Environ. Res. Public Health 2019, 16(17), 3130; https://doi.org/10.3390/ijerph16173130 - 28 Aug 2019
Cited by 2
Abstract
This paper proposes a framework for an Air Quality Decision Support System (AQDSS), and as a proof of concept, develops an Internet of Things (IoT) application based on this framework. This application was assessed by means of a case study in the City [...] Read more.
This paper proposes a framework for an Air Quality Decision Support System (AQDSS), and as a proof of concept, develops an Internet of Things (IoT) application based on this framework. This application was assessed by means of a case study in the City of Madrid. We employed different sensors and combined outdoor and indoor data with spatiotemporal activity patterns to estimate the Personal Air Pollution Exposure (PAPE) of an individual. This pilot case study presents evidence that PAPE can be estimated by employing indoor air quality monitors and e-beacon technology that have not previously been used in similar studies and have the advantages of being low-cost and unobtrusive to the individual. In future work, our IoT application can be extended to include prediction models, enabling dynamic feedback about PAPE risks. Furthermore, PAPE data from this type of application could be useful for air quality policy development as well as in epidemiological studies that explore the effects of air pollution on certain diseases. Full article
(This article belongs to the Special Issue Integrated human exposure to air pollution)
Show Figures

Graphical abstract

Back to TopTop