Fruit Tree Cultivation and Sustainable Orchard Management

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Fruit Production Systems".

Deadline for manuscript submissions: closed (30 July 2025) | Viewed by 773

Special Issue Editors

Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
Interests: fruit tree cultivation; pomology

E-Mail Website
Guest Editor
National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
Interests: fruit tree cultivation; pomology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fruit tree cultivation is crucial in advancing sustainable agriculture, especially in arid and semi-arid regions where water and nutrient resources are often limited. Sustainable orchard management aims to balance high productivity with environmental conservation, focusing on innovative strategies that enhance soil health, optimize water use, and maximize nutrient efficiency. This Special Issue welcomes research that delves into the application of organic and bio-fertilizers, precision agriculture technologies, and sustainable cultivation practices. Contributions can also address the challenges of mitigating environmental impacts, preventing soil degradation, and managing pests in ways that support ecosystem resilience. Studies on advanced technologies, such as remote sensing, IoT, and data-driven decision-making for yield improvement, are encouraged. Our goal is to gather valuable insights on effective and sustainable practices that contribute to food security, biodiversity, and orchard ecosystem health.

Dr. Kun Yu
Dr. Xiao-Fei Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fruit quality
  • subsurface drip irrigation
  • soil nutrient
  • soil microbial community
  • plant nutrient

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 784 KB  
Article
Impacts of Tree Thinning on Overall Productivity in Densely Planted Walnut Orchards
by Qian Ye, Qinyang Yue, Yingxia Zhang, Rui Zhang, Qiang Jin, Jianliang Zhang, Siyuan Zhu, Miaomiao Zhao and Zhongzhong Guo
Horticulturae 2025, 11(10), 1216; https://doi.org/10.3390/horticulturae11101216 - 9 Oct 2025
Viewed by 298
Abstract
To effectively address the issues of poor ventilation, light deficiency, increased pest and disease pressure, and declining fruit quality in closed-canopy walnut orchards, this study was conducted in a standard, densely planted ‘Xinwen 185’ walnut orchard. Three treatments were established: an unthinned control [...] Read more.
To effectively address the issues of poor ventilation, light deficiency, increased pest and disease pressure, and declining fruit quality in closed-canopy walnut orchards, this study was conducted in a standard, densely planted ‘Xinwen 185’ walnut orchard. Three treatments were established: an unthinned control (CK), a 1-year thinning treatment (T1), and a 2-year thinning treatment (T2). All parameters were uniformly investigated during the 2023 growing season to analyze the effects of thinning on orchard population structure, microenvironment, leaf physiological characteristics, fruit quality, and yield. The results demonstrated that tree thinning significantly optimized the population structure: crown width expanded by 6.22–6.76 m, light transmittance increased to 27.74–33.64%, and orchard coverage decreased from 100% to 75.94–80.51%. The microenvironment was improved: inter-row temperature increased by 2.34–4.08 °C, light intensity increased by 5.38–25.29%, and relative humidity decreased by 2.15–3.30%. Furthermore, leaf physiological functions were activated: in the T2 treatment, the chlorophyll content in outer-canopy leaves increased by 15.23% and 12.45% at the kernel-hardening and maturity stages, respectively; the leaf carbon-to-nitrogen ratio increased by 18.67%; the net photosynthetic rate (Pn) during fruit expansion increased by 34.21–46.10%; and the intercellular CO2 concentration (Ci) decreased by 10.18–10.31%. Fruit quality and yield were synergistically enhanced: single fruit weight increased by 23.39~37.94%, and kernel weight increased by 26.79–41.13%. The total sugar content in inner-canopy fruits increased by 16.50–16.67%, while the protein and fat content in outer-canopy fruits increased by 0.69–12.50% and 0.60–2.18%, respectively. Yield exhibited a “short-term adjustment and long-term gain” pattern: the T2 treatment (after 2 years of thinning) achieved a yield of 5.26 t·ha−1, which was 20.38% higher than the CK. The rates of diseased fruit and empty shells decreased by 65.71% and 93.22%, respectively, and the premium fruit rate reached 90.60%. This study confirms that tree thinning is an effective measure for improving the growing environment and enhancing overall productivity in closed-canopy walnut orchards, providing a scientific basis for sustainable orchard management and increased orchard profitability. Full article
(This article belongs to the Special Issue Fruit Tree Cultivation and Sustainable Orchard Management)
Show Figures

Figure 1

Back to TopTop