Food Safety Protection: Intelligent Detection and Green Control of Foodborne Bacterial Pathogens

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 15 December 2025 | Viewed by 546

Special Issue Editor


E-Mail Website
Guest Editor
1. Key Laboratory of Control Technology and Standard for Agri–Product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province–State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: research on the pathogenesis of bacterial pathogens; research on the prevention and control of bacterial pathogens by bacteriophage and endolysin

Special Issue Information

Dear Colleagues,

Foodborne pathogens pose persistent threats to global food safety and public health. This Special Issue seeks high-quality research on advanced detection technologies, antimicrobial resistance (AMR) mechanisms, and innovative intervention strategies.

We particularly welcome studies on the following topics:

(1) Rapid and multiplex detection platforms, including CRISPR-Cas-based diagnostics, portable biosensors, microfluidic chips, and AI-assisted non-targeted screening technologies;

(2) AMR surveillance and risk assessment, focusing on high-risk resistance genes and their transmission dynamics;

(3) Novel antimicrobial solutions, such as phage therapy, endolysin, antimicrobial peptides and probiotics. Interdisciplinary approaches integrating multi-omics, nanotechnology, and computational modeling to develop comprehensive prevention strategies are strongly encouraged.

Dr. Maoda Pang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • foodborne bacterial pathogens
  • rapid detection
  • multiplex detection
  • antimicrobial resistance
  • pathogen control strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1855 KiB  
Article
Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract
by Noor Akhras, Abuzer Çelekli and Hüseyin Bozkurt
Foods 2025, 14(14), 2449; https://doi.org/10.3390/foods14142449 - 11 Jul 2025
Viewed by 464
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on [...] Read more.
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on their physicochemical properties. The nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). Successful synthesis was achieved through a co-precipitation method, resulting in an average particle size of 36.6 nm. The presence of polyphenols and flavonoids in A. absinthium L. extract acted as both a reducing agent and stabilizer for the nanoparticles. The physicochemical characterization revealed strong absorption peaks indicative of ZnO, confirming successful nanoparticle formation. In addition to the structural findings, this study presents novel insights by demonstrating that Artemisia-mediated ZnO NPs possess significantly enhanced antimicrobial activity compared to both pure ZnO NPs and the plant extract alone. The biosynthesized nanoparticles exhibited notably lower minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values against Staphylococcus aureus, Escherichia coli, and Candida albicans, suggesting a strong synergistic effect between ZnO and the phytochemicals of A. absinthium L. Thus, the study confirms and quantifies the superior antibacterial potential of Artemisia-derived ZnO NPs, offering promising implications for food, biomedical and pharmaceutical applications. Full article
Show Figures

Figure 1

Back to TopTop