Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Plant Collection and Extraction
2.2.2. Extraction Process (Gradient Program)
2.2.3. The Synthesis of Artemisia-Zinc Oxide Nanoparticles (Artemisia-ZnO NPs)
2.2.4. Characterization of Artemisia-ZnO NPs
2.2.5. Sample Preparation for HPLC Phenolic Compound Analysis
2.2.6. Determination of Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and Antioxidant Activity (DPPH)
Preparation of Artemisia-ZnO NPs Suspension
Total Phenolic Content (TPC)
Determination of Total Flavonoid Content (TFC)
Determination of Diphenylpicrylhydrazyl (DPPH) Radical Scavenging Activity
2.2.7. Antimicrobial Activity Assessment
Sample Preparation for Antimicrobial Testing
The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
Well Diffusion Method
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Profile of A. absinthium L.
3.2. Total Flavonoid Content, Total Phenolic Content, and Antioxidant Activity of A. absinthium L. Extract and Artemisia-ZnO NPs
3.3. Characterization of Artemisia-ZnO NPs
3.4. Antimicrobial Activity Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Al-Mohammadi, A.-R.; Ibrahim, R.A.; Moustafa, A.H.; Ismaiel, A.A.; Abou Zeid, A.; Enan, G. Fermented Beverage. Molecules 2021, 26, 2635. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Q.; Hayat, Z.; Zhang, D.D.; Li, M.Y.; Hu, S.; Wu, Q.; Cao, Y.F.; Yuan, Y. Modification, and applications in food and agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Galedari, S.; Teimouri, M. Study of the Physicochemical Properties and Anti-biofilm Effects of Synthesized Zinc Oxide Nanoparticles Using Artemisia Plant. Int. J. Basic Sci. Med. 2020, 5, 101–107. [Google Scholar] [CrossRef]
- Mohammed, P.N.; Hussen, N.H.; Hasan, A.H.; Jaza, H.; Salh, H.; Jamalis, J.; Ahmed, S.; Bhat, A.R.; Nourah, P.; Abdulrahman, B. A Review on the Role Of Nanoparticles for Targeted Brain Drug Delivery: Synthesis, Characterization, And Applications. EXCLI J. 2025, 24, 34–59. [Google Scholar]
- Carvalho, I.S.; Cavaco, T.; Brodelius, M. Phenolic composition and antioxidant capacity of six Artemisia species. Ind. Crops Prod. 2011, 2, 382–388. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Mavi, A.; Kilic, H. Screening of Chemical Composition and Antifungal and Antioxidant Activities of the Essential Oils from Three Turkish Artemisia species. J. Agric. Food Chem. 2005, 53, 1408–1416. [Google Scholar] [CrossRef]
- Boeing, T.; Souza, J.D.; Cretton, S.; Klein-junior, L.C.; de Souza, P. Gastroprotective effect of Artemisia absinthium L.: A medicinal plant used in the treatment of digestive disorders. J. Ethnopharmacol. 2023, 312, 116488. [Google Scholar] [CrossRef]
- Veretnova, O.Y.; Gulenkova, G.S.; Chepeleva, G.G.; Fedchenko, E.A.; Rybakova, G.R. Rationale and methods of the use of Artemisia absinthium L., Ledum palustre L. and Tanacetum vulgare L. for food purposes. Earth Environ. Sci. 2020, 421, 022032. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, K.; Yuan, X.; Wang, Q.; Dun, C.; Wang, R.; Yang, S.; Yang, Y.; Zhang, H.; Zhang, H. Determination of 20 phenolic compounds in propolis by HPLC-UV and HPLC-MS/MS. J. Food Compos. Anal. 2023, 115, 104877. [Google Scholar] [CrossRef]
- Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane Ouaritini, Z.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; Giesy, J.P.; et al. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules 2022, 27, 1136. [Google Scholar] [CrossRef] [PubMed]
- Mi, K.; Yuan, X.; Wang, Q.; Dun, C.; Wang, R.; Yang, S.; Yang, Y.; Zhang, H.; Zhang, H. Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Front. Plant Sci. 2023, 14, 1196201. [Google Scholar] [CrossRef]
- Aeineh, M.; Najafian, S.H.; Hosseinifarahi, M. Investigating the Phenological Stages of Essential Oil Yield and Essential Oil Compounds and Phytochemical Properties of Artemisia absinthium L. (Wormwood). Russ. J. Plant Physiol. 2023, 70, 149. [Google Scholar] [CrossRef]
- Ceyhan, S.; Erkmen, O. Identification Of Phenolic Compounds and Changes in Their Content During Processes Of White Wines. Carpathian J. Food Sci. Technol. 2023, 30, 216–225. [Google Scholar] [CrossRef]
- Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev. 2019, 12, 19–24. [Google Scholar] [CrossRef]
- Çelekli, A.; Akhras, N.; Bozkurt, H. Improving antimicrobial activity of brown propolis with incorporation of Arthrospira platensis. Food Humanit. 2024, 2, 100191. [Google Scholar] [CrossRef]
- Schofield, C.B. Updating antimicrobial susceptibility testing: Methods. Clin. Lab. Sci. J. Am. Soc. Med. Technol. 2012, 25, 233–239. [Google Scholar] [CrossRef]
- Zarrindokht Emami-Karvani, P.C. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 2012, 5, 1368–1373. [Google Scholar] [CrossRef]
- Saunoriūtė, S.; Ragažinskienė, O.; Ivanauskas, L.; Marksa, M.; Laužikė, K.; Raudonė, L. Phenolic Diversity and Antioxidant Activity of Artemisia abrotanum L. and Artemisia absinthium L. during Vegetation Stages. Separations 2023, 23, 545. [Google Scholar] [CrossRef]
- Matvieieva, N.; Drobot, K.; Duplij, V.; Ratushniak, Y.; Shakhovsky, A.; Kyrpa-Nesmiian, T.; Mickevičius, S.; Brindza, J. Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots. Prep. Biochem. Biotechnol. 2019, 49, 82–87. [Google Scholar] [CrossRef]
- Taherkhani, M. Chemical composition, antimicrobial activity, antioxidant and total phenolic content within the leaves essential oil of Artemisia absinthium L. growing wild in Iran. Afr. J. Pharm. Pharmacol. 2013, 7, 30–36. [Google Scholar] [CrossRef]
- Hashemi, Z.; Ebrahimzadeh, M.A.; Khalili, M. Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Trop. J. Pharm. Res. 2019, 18, 1443–1448. [Google Scholar] [CrossRef]
- Ksibi, N.; Saada, M.; Yeddes, W.; Limam, H.; Tammar, S.; Wannes, W.A.; Labidi, N.; Hessini, K.; Dakhlaoui, S.; Frouja, O.; et al. Phytochemical Profile, Antioxidant and Antibacterial Activities of Artemisia absinthium L. Collected from Tunisian Regions. J. Mex. Chem. Soc. 2022, 66, 312–329. [Google Scholar] [CrossRef]
- Şahin, S.; Aybastıer, Ö.; Işık, E. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 2013, 141, 1361–1368. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Radácsi, P.; Gosztola, B.; Németh, É.Z. Effects of temperature and light intensity on morphological and phytochemical characters and antioxidant potential of wormwood (Artemisia absinthium L.). Biochem. Syst. Ecol. 2018, 79, 1–7. [Google Scholar] [CrossRef]
- Ahmed, Z.; Aslam Channa, N.; Parveen Solangi, S.; Farooque, S.; Hussain Soomro, Z.H.; Quraishi, N.; Ali Dahri, Z. Journal of Population Therapeutics & Clinical Pharmacology. SSRN Electron. J. 2024, 31, 858–863. [Google Scholar] [CrossRef]
- Boudjelal, A.; Smeriglio, A.; Ginestra, G.; Denaro, M.; Trombetta, D. Phytochemical profile, safety assessment and wound healing activity of Artemisia absinthium L. Plants 2020, 9, 1744. [Google Scholar] [CrossRef]
- Kaoudoune, C.; Benchikh, F.; Benabdallah, H.; Loucif, K.; Mehlous, S.; Amira, S. Gastroprotective effect and in vitro Antioxidant Activities of the Aqueous Extract from Artemisia absinthium L Aerial Parts. J. Drug Deliv. Ther. 2020, 10, 153–156. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Ebrahimzadeh, M.A.; Ansaroudi, F.; Nabavi, S.F.; Nabavi, S.M. Antidepressant and antioxidant activities of Artemisia absinthium L. at flowering stage. Afr. J. Biotechnol. 2009, 8, 7170–7175. [Google Scholar]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019, 47, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Role of pH on zinc oxide nanoparticles synthesis using gum arabic for sustainable and safe antibacterial agent. J. Sustain. Sci. Manag. 2019, 14, 11–20. [Google Scholar]
- Vishwakarma, A.; Singh, S.P.A. Synthesis of Zinc Oxide Nanoparticle by Sol-Gel Method and Study its Characterization. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1625–1627. [Google Scholar] [CrossRef]
- Venu Gopal, V.R.; Kamila, S. Effect of temperature on the morphology of ZnO nanoparticles: A comparative study. Appl. Nanosci. 2017, 7, 75–82. [Google Scholar] [CrossRef]
- Orshiso, T.A.; Zereffa, E.A.; Murthy, H.C.A.; Demissie, T.B.; Pardeshi, O.; Avhad, L.S.; Ghotekar, S. Biosynthesis of Artemisia abyssinica Leaf Extract-Mediated Bimetallic ZnO–CuO Nanoparticles: Antioxidant, Anticancer, and Molecular Docking Studies. ACS Omega 2023, 8, 41039–41053. [Google Scholar] [CrossRef] [PubMed]
- Sesime, K.; Dzagli, M.M.; Afoudji, K.B.R. Green synthesis and characterization of zinc oxide nanoparticles using extracts of Artemisia annua l. grown in Togo. J. Optoelectron. Biomed. Mater. 2021, 13, 193–201. [Google Scholar] [CrossRef]
- Acharya, R.; Tettey, F.; Gupta, A.; Sharma, K.R.; Parajuli, N.; Bhattarai, N. Bioinspired synthesis and characterization of zinc oxide nanoparticles and assessment of their cytotoxicity and antimicrobial efficacy. Discov. Appl. Sci. 2024, 6, 41039–41053. [Google Scholar] [CrossRef]
- Azeez, H.H.; Karim, H.H.; Hasan, H.H. Green Synthesis ZnO NPs and Their Effects on Plant Growing. Coll. Basic Educ. Res. J. 2024, 20, 101–118. [Google Scholar]
- Hosseinzadeh, E.; Foroumadi, A.; Firoozpour, L. What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorg. Chem. Commun. 2023, 147, 110243. [Google Scholar] [CrossRef]
- Mutukwa, D.; Taziwa, R.; Khotseng, L.E. A Review of the Green Synthesis of ZnO Nanoparticles Utilising Southern African Indigenous Medicinal Plants. Nanomaterials 2022, 12, 3456. [Google Scholar] [CrossRef]
- Singh, R.P.; Shukla, V.K.; Yadav, R.S.; Sharma, P.K.; Singh, P.K.; Pandey, A.C. Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett. 2011, 2, 313–317. [Google Scholar] [CrossRef]
- Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process 2015, 32, 55–61. [Google Scholar] [CrossRef]
- Gireesh, T.; Nair, P.P.; Sudhakaran, P.R. Studies on the bioavailability of the provitamin A carotenoid, β-carotene, using human exfoliated colonic epithelial cells. Br. J. Nutr. 2004, 92, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Albarakaty, F.M.; Alzaban, M.I.; Alharbi, N.K.; Bagrwan, F.S.; El-aziz, A.; Mahmoud, M.A. Science Zinc oxide Nanoparticles, Biosynthesis, characterization and their potent photocatalytic degradation, and antioxidant activities. J. King Saud Univ. Sci. 2023, 35, 102434. [Google Scholar] [CrossRef]
- Jaison, J.P.; Sebastian, J.K. Artemisia stelleriana -mediated ZnO nanoparticles for textile dye treatment: A green and sustainable approach. Water Pr. Technol. 2023, 18, 911–921. [Google Scholar] [CrossRef]
- Djearamane, S.; Loh, Z.C.; Lee, J.J.; Wong, L.S.; Rajamani, R.; Luque, P.A.; Gupta, P.K.; Liang, S.X.T. Remedial Aspect of Zinc Oxide Nanoparticles Against Serratia marcescens and Enterococcus faecalis. Front. Pharmacol. 2022, 13, 891304. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Nada, A.A.; Hassabo, A.G.; Eid, B.M.; Noor El-Deen, A.M.; Abou-Zeid, N.Y. Effect of different capping agents on physicochemical and antimicrobial properties of ZnO nanoparticles. Chem. Pap. 2017, 71, 1365–1375. [Google Scholar] [CrossRef]
- Khalighi, A.; Behdani, R.; Kouhestani, S. Probiotics: A Comprehensive Review of Their Classification, Mode of Action and Role in Human Nutrition. In Probiotics and Prebiotics Human Nutrition Health; IntechOpen Limited: London, UK, 2016; pp. 1–11. [Google Scholar]
- Shelembe, B.; Moodley, R.; Chenia, H. In vitro antibacterial and cytotoxic activity of zinc oxide, iron oxide and silver nanoparticles synthesised from Artemisia afra. S. Afr. J. Chem. 2023, 77, 119–125. [Google Scholar] [CrossRef]
- Wang, D.; Cui, L.; Chang, X.; Guan, D. Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua and investigate their effect on proliferation, osteogenic differentiation and mineralization in human osteoblast-like MG-63 Cells. J. Photochem. Photobiol. B Biol. 2020, 202, 111652. [Google Scholar] [CrossRef]
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019, 12, 3576–3600. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 35004–35010. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | RET. Time | Quantity [ppm] | R2 |
---|---|---|---|
Chlorogenic acid | 33.268 | 6.12 ± 0.31 | 0.9965 |
Caffeic acid | 38.098 | 4.49 ± 0.22 | 0.9978 |
Apigenin | 62.415 | 10.01 ± 0.50 | 0.9923 |
P-Coumaric acid | 57.785 | 0.21 ± 0.01 | 0.997 |
Galangin | 78.619 | 3.12 ± 0.16 | 0.9916 |
Trans-Ferulic acid | 62.275 | 9.68 ± 0.48 | 0.9955 |
Kaempferol | 75.474 | 19.41 ± 0.97 | 0.9944 |
2,4-dimethoxy cinnamic acid | 5.001 | 11.87 ± 0.59 | 0.9957 |
Pinocembrin | 78.146 | 69.16 ± 3.46 | 0.9999 |
Procyanidin B2 | 2.960 | 26.61 ± 1.33 | 0.9965 |
Quercetin | 75.818 | 0.88 ± 0.04 | 0.9989 |
Catechin | 41.270 | 0.15 ± 0.01 | 0.9995 |
Parameter | Unit | A. absinthium L. Extract | Artemisia-ZnO NPs (80 °C Synthesis) |
---|---|---|---|
Total Flavonoid Content | mg QE/g | 49.12 ± 0.04 a | 18.65 ± 0.12 b |
Total Phenolic Content | mgGAE/g | 119.45 ± 0.01 a | 52.34 ± 0.08 b |
DPPH | μg/mL | 369 ± 0.03 a | 211 ± 0.05 b |
Study | Plant Species | Particle Size [nm] | Morphology | Synthesis Method |
---|---|---|---|---|
Galedari & Teimouri (2020) [4] | Artemisia sp. | 17 | Spherical | Green synthesis using plant extract; characterized by SEM and TEM |
Orshiso & Zereffa (2023) [35] | Artemisia abyssinica | 5–22 | Nearly spherical | Green synthesis using leaf extract; characterized by SEM |
Sesime et al., (2021) [36] | Artemisia annua | 21.34–24.71 | Spherical | Green synthesis using plant extract; characterized by XRD and SEM |
Azeez et al., (2024) [38] | Artemisia abrotanum | 50.29 | Nanorod | Green synthesis using leaf extract; characterized by SEM |
Acharya et al., (2024) [37] | Artemisia vulgaris | 17.82 | Spherical | Green synthesis using leaf extract; characterized by SEM |
Microorganism | Agent | MIC [mg/mL] | MBC [mg/mL] |
---|---|---|---|
S. aureus | Artemisia-ZnO NPs | 0.312 ± 0.00 a | 0.625 ± 0.00 a |
Pure ZnO [uncapped] | 0.625 ± 0.00 b | 1.25 ± 0.00 b | |
A. absinthium L. extract | 0.625 ± 0.00 b | 1.25 ± 0.00 b | |
E. coli | Artemisia-ZnO NPs | 1.25 ± 0.00 a | 2.50 ± 0.00 a |
Pure ZnO NPs | 2.50 ± 0.00 b | 2.50 ± 0.00 a | |
A. absinthium L. extract | 2.50 ± 0.00 b | 5.00 ± 0.00 b | |
C. albicans | Artemisia-ZnO NPs | 0.625 ± 0.00 a | 1.25 ± 0.00 a |
Pure ZnO NPs | 2.50 ± 0.00 b | 5.00 ± 0.00 b | |
A. absinthium L. extract | 2.50 ± 0.00 b | 5.00 ± 0.00 b |
Microorganism | Pure ZnO NPs | A. absinthium L. Extract | Artemisia-ZnO NPs | Positive Control |
---|---|---|---|---|
E. coli | 9.00 ± 0.25 c | 18.00 ± 5.00 a | 14.00 ± 2.56 b | 16.00 ± 3.75 ab (Tetracycline) |
C.albicans | 10.00 ± 0.17 c | 16.00 ± 2.83 b | 18.00 ± 3.43 b | 25.00 ± 4.30 a (Fluconazole) |
S. aureus | 12.00 ± 1.38 c | 22.28 ± 6.51 b | 24.00 ± 4.00 a | 30.00 ± 7.88 a (Tetracyclin) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhras, N.; Çelekli, A.; Bozkurt, H. Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract. Foods 2025, 14, 2449. https://doi.org/10.3390/foods14142449
Akhras N, Çelekli A, Bozkurt H. Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract. Foods. 2025; 14(14):2449. https://doi.org/10.3390/foods14142449
Chicago/Turabian StyleAkhras, Noor, Abuzer Çelekli, and Hüseyin Bozkurt. 2025. "Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract" Foods 14, no. 14: 2449. https://doi.org/10.3390/foods14142449
APA StyleAkhras, N., Çelekli, A., & Bozkurt, H. (2025). Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract. Foods, 14(14), 2449. https://doi.org/10.3390/foods14142449