Special Issue "Meiofauna Biodiversity and Ecology"

A special issue of Diversity (ISSN 1424-2818). This special issue belongs to the section "Marine Diversity".

Deadline for manuscript submissions: 31 March 2020.

Special Issue Editors

Dr. Federica Semprucci
E-Mail Website
Guest Editor
Universita degli Studi di Urbino Carlo Bo, Urbino, Italy
Interests: meiofauna; nematoda; benthic biodiversity; marine pollution; ecological quality assessment
Prof. Dr. Roberto Sandulli
E-Mail Website
Guest Editor
Department of Science and Technology, “Parthenope” University of Naples, 80143 Naples, Italy
Interests: marine meiofauna; bioconstructions; marine pollution; invasive species; marine biodiversity; marine protected areas

Special Issue Information

Dear Colleagues,

The Diversity Journal is about to launch a Special Issue dedicated to Meiofauna Biodiversity and Ecology.

Soft-bottom habitats cover the vast majority of the ocean floor and constitute the largest ecosystem on Earth. These systems supply fundamental services, such as food production and nutrient recycling, to human beings. It is well known that meiofauna are an abundant and ubiquitous component of sediments, even though their biodiversity and importance in marine ecosystem functioning are still yet to be fully investigated. In this Special Issue, the meiofaunal biodiversity trends in marine habitats worldwide are documented, along with the collection of empirical evidence on their role in ecosystem services, such as the production, consumption, and decomposition of organic matter, and energy transfer to higher and lower trophic levels. Meiofaunal activities, like feeding and bioturbation, induce changes in several physico-chemical and biological properties of sediments, and might increase the resilience of the benthic ecosystem processes that are essential for the supply of ecosystem goods and services required by humans. As a key component of marine habitats, the taxonomical and functional aspects of the meiofaunal community are also used for the ecological assessment of the sediments quality status, giving important information on the anthropogenic impact of benthos.

Dr. Federica Semprucci
Prof. Dr. Roberto Sandulli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diversity is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Taxonomical and functional diversity
  • Ecological assessment
  • Bioindicator species
  • Benthic component interactions

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
The Effects of Habitat Heterogeneity at Distinct Spatial Scales on Hard-Bottom-Associated Communities
Diversity 2020, 12(1), 39; https://doi.org/10.3390/d12010039 (registering DOI) - 20 Jan 2020
Abstract
For marine benthic communities, environmental heterogeneity at small spatial scales are mostly due to biologically produced habitat heterogeneity and biotic interactions, while at larger spatial scales environmental factors may prevails over biotic features. In this study, we investigated how community structure and β-diversity [...] Read more.
For marine benthic communities, environmental heterogeneity at small spatial scales are mostly due to biologically produced habitat heterogeneity and biotic interactions, while at larger spatial scales environmental factors may prevails over biotic features. In this study, we investigated how community structure and β-diversity of hard-bottom-associated meio- and macrofauna varied in relation to small-scale (cm–m) changes in biological substrate (an algae “turf” dominated by the macroalgae Gelidium sp., the macroalgae Caulerpa racemosa and the sponge Hymeniacidon heliophile) in a rocky shore and in relation to larger-scale (10’s m) changes in environmental conditions of the same biological substrate (the macroalgae Bostrychia sp) in different habitats (rocky shore vs. mangrove roots). Results showed that both substrate identity and the surrounding environment were important in structuring the smaller-sized meiofauna, particularly the nematode assemblages, whereas the larger and more motile macrofauna was influenced only by larger-scale changes in the surrounding ecosystem. This implies that the macrofauna explores the environment in a larger spatial scale compared to the meiofauna, suggesting that effects of spatial heterogeneity on communities are dependent on organism size and mobility. Changes in taxa composition between environments and substrates highlight the importance of habitat diversity at different scales for maintaining the diversity of the associated fauna. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Open AccessArticle
Two New Marine Free-Living Nematodes from Jeju Island Together with a Review of the Genus Gammanema Cobb 1920 (Nematoda, Chromadorida, Selachinematidae)
Diversity 2020, 12(1), 19; https://doi.org/10.3390/d12010019 - 01 Jan 2020
Abstract
In the context of exploration of meiofauna in a sandy intertidal zone of Jeju Island (South Korea), over 70 nematode species are identified, some which have been proven to be new for science. Two new free-living marine nematode species of the family Selachinematidae [...] Read more.
In the context of exploration of meiofauna in a sandy intertidal zone of Jeju Island (South Korea), over 70 nematode species are identified, some which have been proven to be new for science. Two new free-living marine nematode species of the family Selachinematidae (Chromadorida, Selachinematidae, Choniolaiminae) are described from the intertidal sandy sediments of Jeju Island (South Korea). Gammanema okhlopkovi sp. n. is closest to Gammanema anthostoma (Okhlopkov, 2002) and differs by having longer cephalic setae (8.5–19 μm in G. okhlopkovi versus 6–7.5 μm in G. anthostoma) and by the presence of precloacal supplementary organs. The genus diagnosis of Gammanema is updated. The genus includes fourteen valid species, while three species are considered species inquirendae due to incomplete diagnoses and illustrations impeding their correct recognition. An annotated list of valid and invalid Gammanema species is provided. A pictorial key for valid Gammanema species is constructed, which consists of two components: (1) simplified images of heads, and (2) a table summarizing most of the significant measured and numeric characters between species. Latronema obscuramphis sp. n. differs from its related species Latronema aberrans (Allgén 1934), Latronema annulatum (Gerlach, 1953), and Latronema spinosum (Andrássy, 1973) by body size, number of supplementary organs, tail shape, length of spicules, and cuticle ornamentation. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Open AccessArticle
A New Species of Monstrillopsis Sars, 1921 (Copepoda: Monstrilloida) with an Unusually Reduced Urosome
Diversity 2020, 12(1), 9; https://doi.org/10.3390/d12010009 - 20 Dec 2019
Abstract
Male monstrilloid copepods, described herein as Monstrillopsis paradoxa sp. nov., were collected from the Chuja Islands, Jeju, Korea, using a light trap. They display many of the common features of Monstrillopsis, including large, prominent eyes, an anteriorly positioned oral papilla, and four [...] Read more.
Male monstrilloid copepods, described herein as Monstrillopsis paradoxa sp. nov., were collected from the Chuja Islands, Jeju, Korea, using a light trap. They display many of the common features of Monstrillopsis, including large, prominent eyes, an anteriorly positioned oral papilla, and four setae on each caudal ramus. Type-2 modification of the antennules further supports the assignment of the new species to Monstrillopsis. However, the present specimens have an unusually low number of urosomal somites, just three in total, compared to five in males of all congeneric species, and from four (in Cymbasoma) to five in males of all other monstrilloid genera. Up until now, in the Monstrilloida only females of Cymbasoma have been known to have as few as three urosomal somites. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Open AccessArticle
Doolia, A New Genus of Nannopodidae (Crustacea: Copepoda: Harpacticoida) from off Jeju Island, Korea
Diversity 2020, 12(1), 3; https://doi.org/10.3390/d12010003 - 18 Dec 2019
Abstract
A new harpacticoid copepod is described from the waters off Jeju Island, Korea. This species displays a unique set of characteristics including a rostrum that is clearly demarcated from the cephalosome, a setular (spinular) row on the rostrum, a well-developed frill along the [...] Read more.
A new harpacticoid copepod is described from the waters off Jeju Island, Korea. This species displays a unique set of characteristics including a rostrum that is clearly demarcated from the cephalosome, a setular (spinular) row on the rostrum, a well-developed frill along the posterior margins of each body segment except for the cephalosome, long and cylindrical caudal rami, four segmented female antennules, paired genital apertures in the female, the absence of sexual dimorphism in legs P1–P4, and highly reduced P5 and P6 in the male. This combination of characteristics allocates the specimen to the family Nannopodidae Por, 1986, but the new species belongs to none of the extant genera within the family. A new genus, Doolia, is proposed. Nannopus is suggested as a sister taxon of the new genus based on shared plesiomorphic characteristics in the maxilliped, legs P1–P4, and P5. Doolia gen. nov. is the eighth genus of Nannopodidae, and an amended key for the genus is provided herein. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Open AccessArticle
The Influential Role of the Habitat on the Diversity Patterns of Free-Living Aquatic Nematode Assemblages in the Cuban Archipelago
Diversity 2019, 11(9), 166; https://doi.org/10.3390/d11090166 - 16 Sep 2019
Abstract
Free living nematodes are the most abundant and diverse metazoans in aquatic sediments. We used a framework of habitat types to reveal quantitative patterns in species richness (SR), β-diversity, and biological traits (BT). Meiofauna was quantitatively collected from 60 sites within nine habitat [...] Read more.
Free living nematodes are the most abundant and diverse metazoans in aquatic sediments. We used a framework of habitat types to reveal quantitative patterns in species richness (SR), β-diversity, and biological traits (BT). Meiofauna was quantitatively collected from 60 sites within nine habitat types and 24,736 nematodes were identified to species level. We reported a regional richness of 410 ± 12 species for the Cuban archipelago; however, caves and deep waters need to be sampled more intensively. Relationships between SR and abundance supported the dynamic equilibrium model with habitats ordered across gradients of resource availability and physical disturbance. Seagrass meadows were the most specious and freshwater/anchihaline caves the least diverse habitats. Differences in β-diversity likely were due to habitat heterogeneity and limitations for dispersal. The assemblage composition was unique in some habitats likely reflecting the effects of habitat filtering. However, coastal habitats shared many species reflecting high connectivity and dispersal capability of nematodes due to hydrodynamics. The BTs “life strategy”, “trophic group”, and “tail shape” reflected ecological adaptations; but “amphidial fovea” and “cuticle”, likely reflected phylogenetic signatures from families/genera living in different habitats. Habitat type played an influential role in the diversity patterns of aquatic nematodes from taxonomic and functional points of view. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Open AccessArticle
An Introduction to the Study of Gastrotricha, with a Taxonomic Key to Families and Genera of the Group
Diversity 2019, 11(7), 117; https://doi.org/10.3390/d11070117 - 23 Jul 2019
Cited by 1
Abstract
Gastrotricha is a group of meiofaunal-sized, free-living invertebrates present in all aquatic ecosystems. The phylum includes over 860 species globally, of which 505 nominal species have been recorded in marine sandy sediments; another 355 taxa inhabit the freshwater environments, where they are recurrent [...] Read more.
Gastrotricha is a group of meiofaunal-sized, free-living invertebrates present in all aquatic ecosystems. The phylum includes over 860 species globally, of which 505 nominal species have been recorded in marine sandy sediments; another 355 taxa inhabit the freshwater environments, where they are recurrent members of the periphyton and epibenthos, and, to a lesser degree, of the plankton and interstitial fauna. Gastrotrichs are part of the permanent meiofauna and, in general, they rank among the top five groups for abundance within meiobenthic assemblages. The diversity, abundance, and ubiquity of Gastrotricha allow us to suppose an important role for these animals in aquatic ecosystems; however, ecological studies to prove this idea have been comparatively very few. This is mainly because the small size and transparency of their bodies make gastrotrichs difficult to discover in benthic samples; moreover, their contractility and fragility make their handling and morphological survey of the specimens rather difficult. Here we offer an overview, describe the basic techniques used to study these animals, and provide a key to known genera in an attempt to promote easy identification and to increase the number of researchers who may be interested in conducting studies on this understudied ecological group of microscopic organisms. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Back to TopTop