Ecology, Distribution, and Conservation of Endangered Birds

A special issue of Diversity (ISSN 1424-2818).

Deadline for manuscript submissions: 31 July 2025 | Viewed by 288

Special Issue Editor


E-Mail Website
Guest Editor
College of Life Sciences, Shaanxi Normal University, Xi’an, China
Interests: avian species ecology and management; reintroduction biology; biodiversity conservation; climate changes

Special Issue Information

Dear Colleagues,

The Special Issue titled “Ecology, Distribution, and Conservation of Endangered Birds” in Diversity focuses on various aspects of avian ecology, particularly concerning endangered species. It is likely to cover the following themes based on the journal's scope:

  • Ecological Studies: Research on the ecological roles of endangered bird species, including their interactions within ecosystems and their contributions to biodiversity.
  • Distribution Patterns: Analysis of the geographical distribution of endangered birds, identifying hotspots of diversity and areas at risk due to habitat loss or climate change.
  • Conservation Strategies: Discussions on effective conservation measures, including habitat protection, restoration efforts, and policy recommendations aimed at mitigating threats to endangered bird populations.
  • Impact of Human Activities: Examination of how human-induced factors such as urbanization, agriculture, and climate change affect the survival of endangered birds.
  • Case Studies: Specific examples of endangered bird species and the unique challenges they face, along with successful conservation initiatives.

Prof. Xiaoping Yu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diversity is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • breeding ecology
  • reintroduction
  • climate changes
  • biodiversity
  • habitat selection
  • conservation
  • species distribution

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 3667 KiB  
Article
Temporal Niche Partitioning as a Coexistence Mechanism Between China’s Endemic Elliot’s Pheasant (Syrmaticus ellioti) and Its Predator, the Leopard Cat (Prionailurus bengalensis)
by Pengchen Zhou, Yalan Xu, Chenbo Huang, Hui Li, Xinyu Cui, Ying Fu, Bin Wang and Xiaoyang Mo
Diversity 2025, 17(7), 460; https://doi.org/10.3390/d17070460 - 28 Jun 2025
Viewed by 152
Abstract
Understanding predator-prey coexistence mechanisms is essential for conserving endemic species in montane ecosystems. Galliformes serve as critical ecological indicator species, yet their populations are declining globally due to habitat fragmentation and anthropogenic pressures. Elliot’s pheasant (Syrmaticus ellioti, Swinhoe, 1872), a Galliformes [...] Read more.
Understanding predator-prey coexistence mechanisms is essential for conserving endemic species in montane ecosystems. Galliformes serve as critical ecological indicator species, yet their populations are declining globally due to habitat fragmentation and anthropogenic pressures. Elliot’s pheasant (Syrmaticus ellioti, Swinhoe, 1872), a Galliformes species endemic to China, is primarily distributed south of the Yangtze River. However, its coexistence mechanisms with sympatric predators remain undocumented. Here, using six years (2019–2024) of camera-trap data from 90 stations in Jiemuxi National Nature Reserve, Hunan Province, Southwest China, we employed a MaxEnt model and kernel density estimation to investigate spatiotemporal coexistence mechanisms between Elliot’s pheasant and its primary predator, the leopard cat (Prionailurus bengalensis, Kerr, 1792). Across 36,946 camera-days, we obtained 227 independent detections of Elliot’s pheasant and 82 of the leopard cat. Spatial niche analysis revealed high overlap (Schoener’s D = 0.769; Hellinger’s I = 0.952). Both species exhibit similar preferences for main environmental variables. Conversely, significant temporal niche segregation occurred: Elliot’s pheasant displayed diurnal bimodal activity, whereas the leopard cat was strictly nocturnal, resulting in low overlap (Δ4 = 0.379, p < 0.01). Critically, during Elliot’s pheasant’s breeding season, increased temporal overlap with the leopard cat (Δ1 = 0.479, p < 0.01) suggested that reproductive behaviors elevate predation risk. Our findings demonstrate that temporal niche partitioning serves as the primary coexistence mechanism, while spatial niche overlap and behavioral adaptations under predation pressure drive dynamic predator-prey interactions. This provides a scientific foundation for targeted conservation strategies and predator management of these threatened Galliformes. Full article
(This article belongs to the Special Issue Ecology, Distribution, and Conservation of Endangered Birds)
Show Figures

Figure 1

Back to TopTop