Plant Succession and Vegetation Dynamics

A special issue of Diversity (ISSN 1424-2818). This special issue belongs to the section "Plant Diversity".

Deadline for manuscript submissions: closed (20 April 2025) | Viewed by 14152

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Arts and Humanities, University of Passau, Innstraße 40, 94032 Passau, Germany
Interests: mangrove ecology; high mountain research; vegetation dynamics; plant ecology; plant diversity; vegetation geography
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute for Geography, Friedrich-Alexander-University, Kochstraße 4/4, 91054 Erlangen, Germany
Interests: vegetation ecology

Special Issue Information

Dear Colleagues,

Plant cover on earth is changing continuously on different temporal and spatial scales. Those changes can be very obvious or rather inconspicuous, they can occur as sudden events or as gradual shifts, they can be locally restricted or global phenomena and they can be effective on different time scales from weeks to thousands of years. Thus, changes in plant cover on earth encompass wide spatio-temporal spectra and also the reasons for their emergence are manyfold.

Processes of directional change in species composition and vegetation structure with time are referred to as succession, a fundamental, but controversially discussed concept in plant community ecology and vegetation geography ever since early accounts in the 19th and 20th century by pioneers such as Adolphe Dureau de la Malle, Eugen Warming, Henry Cowles, Frederic Clements or Henry A. Gleason. Directional succession, however, is just one part of vegetation dynamics. There exists a broad variety of additional processes and patterns of vegetation change in both, space and time such as mosaic cycles, gap dynamics or cohort dynamics following diebacks. A better understanding of successional pathways, the processes involved and vegetation dynamics in general is crucial in times of rapid environmental change and increasing frequency and intensity of natural and man-made disturbances, as it has important implications for ecosystem restoration and overall vegetation management.

This Special Issue aims at highlighting and showcasing recent findings and advances in the study of plant succession and vegetation dynamics. Case studies from all plant communities on earth are welcome, as are comparisons between different plant communities. Methods employed may include, but are not limited to, permanent plot studies, chronosequence approaches, manipulation experiments, remote sensing techniques and modelling, to cover a broad range of spatial and temporal scales as well as potential underlying reasons in vegetation dynamics today.

Dr. Thomas Fickert
Prof. Dr. Michael Richter
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diversity is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vegetation dynamics
  • succession
  • mosaic cycles
  • gap dynamics
  • cohort dynamics
  • colonization
  • propagule dispersal pathways
  • species turnover
  • ecosystem functioning
  • conservation
  • natural regeneration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 10410 KiB  
Article
Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients
by Scott R. Abella, Lindsay P. Chiquoine, Elizabeth C. Bailey, Shelley L. Porter, Cassandra D. Morrison, Calvin A. Farris and Jennifer E. Fox
Diversity 2025, 17(2), 88; https://doi.org/10.3390/d17020088 - 25 Jan 2025
Viewed by 696
Abstract
Co-varying disturbance and environmental gradients can shape vegetation dynamics and increase the diversity of plant communities and their features. Pinyon–juniper woodlands are widespread in semi-arid climates of western North America, encompassing extensive environmental gradients, and a knowledge gap is how the diversity in [...] Read more.
Co-varying disturbance and environmental gradients can shape vegetation dynamics and increase the diversity of plant communities and their features. Pinyon–juniper woodlands are widespread in semi-arid climates of western North America, encompassing extensive environmental gradients, and a knowledge gap is how the diversity in features of these communities changes across co-varying gradients in fire history and soil. In pinyon–juniper communities spanning soil parent materials (basalt, limestone) and recent fire histories (0–4 prescribed fires or managed wildfires and 5–43 years since fire) in Grand Canyon-Parashant National Monument (Arizona, USA), we examined variation at 25 sites in three categories of plant community features including fuels, tree structure, and understory vegetation. Based on ordinations, canonical correlation analysis, and permutation tests, plant community features varied primarily with the number of fires, soil coarseness and chemistry, and additionally with tree structure for understory vegetation. Fire and soil variables accounted for 33% of the variance in fuels and tree structure, and together with tree structure, 56% of the variance in understories. The cover of the non-native annual Bromus tectorum was higher where fires had occurred more recently. In turn, B. tectorum was positively associated with the percentage of dead trees and negatively associated with native forb species richness. Based on a dendroecological analysis of 127 Pinus monophylla and Juniperus osteosperma trees, only 18% of trees presently around our study sites originated before the 1870s (Euro-American settlement) and <2% originated before the 1820s. Increasing contemporary fire activity facilitated by the National Park Service since the 1980s corresponded with increasing tree mortality and open-structured stands, apparently more closely resembling pre-settlement conditions. Using physical geography, such as soil parent material, as a landscape template shows promise for (i) incorporating diversity in long-term community change serving as a baseline for vegetation management, (ii) customizing applying treatments to unique conditions on different soil types, and (iii) benchmarking monitoring metrics of vegetation management effectiveness to levels scaled to biophysical variation across the landscape. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

21 pages, 4058 KiB  
Article
Forest Attribute Dynamics in Secondary Forests: Insights for Advancing Ecological Restoration and Transformative Territorial Management in the Amazon
by Carlos H. Rodríguez-León, Armando Sterling, Amelia Trujillo-Briñez, Yerson D. Suárez-Córdoba and Lilia L. Roa-Fuentes
Diversity 2025, 17(1), 39; https://doi.org/10.3390/d17010039 - 6 Jan 2025
Cited by 1 | Viewed by 1091
Abstract
The Amazon ecosystem plays a vital role in global climate regulation and biodiversity conservation but faces escalating threats from deforestation and degradation. The resulting secondary forests (SFs) provide a promising opportunity for Transformative Territorial Management, fostering restoration and enhancing conservation values. This study [...] Read more.
The Amazon ecosystem plays a vital role in global climate regulation and biodiversity conservation but faces escalating threats from deforestation and degradation. The resulting secondary forests (SFs) provide a promising opportunity for Transformative Territorial Management, fostering restoration and enhancing conservation values. This study evaluated aboveground biomass (AGB), species diversity, forest structure, and soil properties in SFs of the Colombian Amazon along a chronosequence, from early to mature successional stages, in landscapes of mountains and of hills to identify key indicators for effective restoration management. The results show a consistent increase in AGB, species diversity, forest structure, and soil quality with forest age, though recovery patterns varied between both landscapes evaluated. Topographic differences influenced successional dynamics, with mountainous landscapes showing faster early recovery compared to the steadier, linear growth observed in hill areas. In hills, AGB at 10 years reached 12.65% of the biomass expected in a mature forest, increasing to nearly 42% by 40 years of abandonment, at a rate of 0.708 Mg C ha−1 year−1. In contrast, in the mountain landscape, AGB at 10 years reached approximately 8.35% of the carbon in a mature forest and increased to nearly 63.55% at 40 years. Forest age and soil properties emerged as primary drivers of AGB recovery, while diversity and forest structure played indirect but significant roles. In hill areas, soil conservation practices are critical for maintaining steady growth, whereas mountain regions benefit from assisted natural regeneration (ANR) to accelerate recovery. These findings highlight the importance of prioritizing the management of SFs as a central strategy for achieving restoration goals. Such practices are essential to enhance the ecological resilience of SFs and ensure their long-term sustainability, fostering their role as key contributors to restoration efforts and the provision of ecosystem services. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

25 pages, 2589 KiB  
Article
Allelopathic Properties of the Species Comprising Communities of Invasive Impatiens spp. and Antioxidant System of Invaders’ Populations
by Eugenija Kupcinskiene, Ruta Budreviciute, Vaida Jasionyte, Laura Simanaviciute, Lina Jociene, Edvina Krokaite-Kudakiene, Tomas Rekasius and Vitas Marozas
Diversity 2025, 17(1), 20; https://doi.org/10.3390/d17010020 - 28 Dec 2024
Viewed by 807
Abstract
Globalization has greatly expanded the opportunities for plant species to enter new areas through a wide range of pathways. Elucidating the pathways of spread of alien species and the characteristics of organisms that make them invasive is one of the most pressing problems [...] Read more.
Globalization has greatly expanded the opportunities for plant species to enter new areas through a wide range of pathways. Elucidating the pathways of spread of alien species and the characteristics of organisms that make them invasive is one of the most pressing problems in ecological sciences. Once established, alien species may have serious implications for communities and vice versa. Allelopathy has been proposed as one of the possible invasion mechanisms of exotic plants. Impatiens parviflora and Impatiens glandulifera are among the widely spread invasive plant species in the Baltic region. The aim of the study was to evaluate the allelopathic effect of invasive Lithuanian Impatiens spp. and their neighboring plants (11 pristine species) using parameters of germination and seedling growth of biotest species Lepidium sativum, and to expand this study by determining the content of phenolic compounds and the radical scavenging activity in the leaf extracts of Lithuanian Impatiens spp. populations (20 of each Impatiens species). Leaf extracts of all species examined had an inhibitory effect on Lepidium sativum germination and morphology of the seedlings. In our study, at all leaf extract concentrations, significantly higher allelopathic potential on radicle growth was characteristic of I. glandulifera compared to native species Alnus glutinosa, Calystegia sepium, and Urtica dioica. At all leaf extract concentrations, I. parviflora showed significantly higher allelopathic potential on radicle growth compared to native species Urtica dioica. Impatiens glandulifera had a higher juglone index than Impatiens parviflora. I. glandulifera also had the highest juglone index compared to all neighboring species studied. The differences between the populations in the content of phenolic compounds, DPPH and ABTS radical scavenging activity were 2.3, 2.2 and 2.7 times for I. glandulifera and 2.6, 5.2 and 2.7 times for I. parviflora. The mean values of total phenolic content, DPPH and ABTS radical scavenging activity of I. glandulifera populations were 2.1, 2.7 and 3.3 times higher than those of I. parviflora populations, respectively. In general, our results about allelopathic potential and phenolics content, as well as free radical scavenging ability, confirm the supreme competitive ability of I. glandulifera compared to both I. parviflora and to the native co-occurring species. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

16 pages, 10249 KiB  
Article
Early Vegetation Recovery After the 2008–2009 Explosive Eruption of the Chaitén Volcano, Chile
by Ricardo Moreno-Gonzalez, Iván A. Díaz, Duncan A. Christie and Antonio Lara
Diversity 2025, 17(1), 14; https://doi.org/10.3390/d17010014 - 26 Dec 2024
Viewed by 681
Abstract
In May 2008, Chaitén volcano entered an eruptive process, leading to one of the world’s largest eruptions in recent decades. The magnitude of tephra ejected by the eruption left different types of disturbances and caused diverse forms of environmental damage that were heterogeneously [...] Read more.
In May 2008, Chaitén volcano entered an eruptive process, leading to one of the world’s largest eruptions in recent decades. The magnitude of tephra ejected by the eruption left different types of disturbances and caused diverse forms of environmental damage that were heterogeneously distributed across the surrounding area. We went to the field to assess the early vegetation responses a year after the eruption in September 2009. We evaluated the lateral-blast disturbance zone. We distributed a set of plots in three disturbed sites and one in an undisturbed site. In each of these sites, in a rectangular plot of 1000 m2, we marked all standing trees, recording whether they were alive, resprouting, or dead. Additionally, in each site of 80 small plots (~4 m2), we tallied the regenerated plants, their coverage, and the log volume. We described whether the plant regeneration was occurring on a mineral or organic substrate (i.e., ash or leaf litter, respectively). In the blast zone, the eruption created a gradient of disturbance. Close to the crater, we found high levels of devastation marked by no surviving species, scarcely standing-dead trees and logs, and no tree regeneration. At the other extreme end of the disturbance zone, the trees with damaged crowns were resprouting, small plants were regrowing, and seedlings were more dispersed. The main form of regeneration was the resprouting of trunks or buried roots; additionally, a few seedlings were observed in the small plots and elsewhere in disturbed areas. The results suggest that the early stages of succession are shaped by life history traits like dispersion syndrome and regeneration strategy (i.e., vegetative), as was found after other volcanic eruptions. Likewise, the distribution of biological legacies, which is related to disturbance intensity, can cause certain species traits to thrive. For instance, in the blow-down zone, surviving species were chiefly those dispersed by the wind, while in the standing-dead zone, survivors were those dispersed by frugivorous birds. Additionally, we suggest that disturbance intensity variations are related to the elevation gradient. The varying intensities of disturbance further contribute to these ecological dynamics. The early succession in the blast zone of Chaitén volcano is influenced by the interaction between species-specific life history, altitudinal gradient, and biological legacies. Further studies are required to observe the current successional patterns that occur directly in the blast zone and compare these results with those obtained following other volcanic disturbances. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

12 pages, 1710 KiB  
Article
Dominant Species Composition, Environmental Characteristics and Dynamics of Forests with Picea jezoensis Trees in Northeast China
by Jichen Duan, Zhiyuan Jia, Shusen Ge, Yutang Li, Dongwei Kang and Junqing Li
Diversity 2024, 16(12), 731; https://doi.org/10.3390/d16120731 - 29 Nov 2024
Viewed by 682
Abstract
To describe the characteristics and dynamics of the Picea jezoensis (PJ) community, a survey of 48 forest plots containing PJ trees was conducted in Northeast China. Methods of community grouping, analysis of variance, and linear regression, and indicators of relative basal area (RBA, [...] Read more.
To describe the characteristics and dynamics of the Picea jezoensis (PJ) community, a survey of 48 forest plots containing PJ trees was conducted in Northeast China. Methods of community grouping, analysis of variance, and linear regression, and indicators of relative basal area (RBA, reflecting the dominance degree of species in the community) and temporary stability (TS, reflecting the stability of forest plant community), were employed. The objectives were to describe the dominant species composition and environment of the PJ community and to quantify the changes in PJ’s dominance status. Communities with PJ trees were divided into four groups: PJ as the first dominant species; PJ as the second dominant species; PJ being co-dominant but ranked third or lower; and PJ as a non-dominant species. Among them, the PJ community (i.e., where PJ is the first dominant species) occupied sites at the highest elevation with a mean value of 1408 m, on gentle slopes ≤ 10°, where the tree species occurring with PJ mainly included Betula costata and Abies nephrolepis. A linear relationship was found between the TS and RBA. The threshold for PJ shifting between being the first and second dominant species in the community was RBA = 0.387. This study provides a scientific basis for judging the attributes and status of PJ community and the protection and restoration of PJ forests. These findings also provide comparable information for ecological research and conservation of PJ forests in other areas. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

19 pages, 3953 KiB  
Article
Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts
by Alina Nasibullina, Katharina Tiebel and Sven Wagner
Diversity 2024, 16(7), 376; https://doi.org/10.3390/d16070376 - 28 Jun 2024
Viewed by 1077
Abstract
The genus Quercus, including species like pedunculate oak (Quercus robur L.), can play a key role in maintaining climate-resistant mixed forests due to its broad ecological spectrum and drought tolerance. Unfortunately, in some parts of Europe, clearcutting has drastically reduced the [...] Read more.
The genus Quercus, including species like pedunculate oak (Quercus robur L.), can play a key role in maintaining climate-resistant mixed forests due to its broad ecological spectrum and drought tolerance. Unfortunately, in some parts of Europe, clearcutting has drastically reduced the oak population. An example of this event is our survey of heritage Oak—Lime forests in European Russia, which were transformed into pure aspen stands. The aim of our study was to provide forecasts and silvicultural recommendations for the passive restoration of these forests. We took a chronosequence approach to assess changes associated with natural succession over 60 years. In our survey of the development of oaks, limes and accompanying tree species (aspen, birches, maples, elms), we used 190 plots ranging across a wide spectrum of forest disturbance due to clearcutting. We demonstrate that aspen reproduce rapidly by root suckers after cutting and occupy more than 60% of the space. But the dominance of aspen decreases continuously from the age of 30, and then the lime trees begin to dominate. Oak does not show successful natural regeneration. Therefore, we recommend planting oak seedlings or sowing acorns, i.e., active restoration, in combination with the natural restoration of lime. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

18 pages, 4734 KiB  
Article
Arrested Succession on Fire-Affected Slopes in the Krummholz Zone and Subalpine Forest of the Northern Limestone Alps
by Marta De Giuli, Markus Winkler, Thomas Deola, Julia Henschel, Oliver Sass, Peter Wolff and Anke Jentsch
Diversity 2024, 16(7), 366; https://doi.org/10.3390/d16070366 - 26 Jun 2024
Cited by 1 | Viewed by 1413
Abstract
Fire in the Northern Alps is comparatively rare. Yet, previous human-ignited fire events in subalpine forests up to the treeline have triggered severe fire damage to vegetation and soil. Here, we investigate post-fire vegetation dynamics in the Northern Limestone Alps about 80 years [...] Read more.
Fire in the Northern Alps is comparatively rare. Yet, previous human-ignited fire events in subalpine forests up to the treeline have triggered severe fire damage to vegetation and soil. Here, we investigate post-fire vegetation dynamics in the Northern Limestone Alps about 80 years after disturbance. We observed higher species richness in burned compared to unburned vegetation and clearly distinct floristic communities emerging after fire-driven forest removal, with several alpine specialist species uniquely found in the burned subalpine sites. The functional composition of vegetation was also distinct, with higher relative forb cover in burned plots. This difference was likely driven by disturbance-related environmental changes, such as increased light availability, offering safe sites for subalpine and alpine species. Due to a general lack of tree encroachment, we consider this a case of arrested succession after fire. We conclude that the recovery of fire-affected subalpine forests is modulated by complex interactions of climatic and biotic filters producing extreme site conditions, controlling the recolonization of the disturbed areas by forest species while providing safe sites for the establishment of a rich subalpine and alpine low-statured flora. The coupling of disturbance and abiotic filters makes high-elevation treeline ecotones very vulnerable to climate change. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

22 pages, 10066 KiB  
Article
Resilience of Aboveground Biomass of Secondary Forests Following the Abandonment of Gold Mining Activity in the Southeastern Peruvian Amazon
by Jorge Garate-Quispe, Marx Herrera-Machaca, Victor Pareja Auquipata, Gabriel Alarcón Aguirre, Sufer Baez Quispe and Edgar Eloy Carpio-Vargas
Diversity 2024, 16(4), 233; https://doi.org/10.3390/d16040233 - 15 Apr 2024
Cited by 2 | Viewed by 2201
Abstract
Amazon rainforests are critical for providing a wide range of ecosystem services. In the Southeastern Peruvian Amazon; however, goldmining activities are causing severe soil degradation and forest loss. We analyzed aboveground biomass (AGB), forest structure, and species diversity recovery during secondary succession in [...] Read more.
Amazon rainforests are critical for providing a wide range of ecosystem services. In the Southeastern Peruvian Amazon; however, goldmining activities are causing severe soil degradation and forest loss. We analyzed aboveground biomass (AGB), forest structure, and species diversity recovery during secondary succession in 179 forest plots. Our study provides the first field-based quantification of AGB recovery following the abandonment by two types of goldmining (heavy machinery and suction pumping) in Madre de Dios (Peru). We found that successional secondary forests in areas subjected to suction pumping were more resilient than those in areas subjected to heavy machinery. After 20 years, mean AGB in suction pumping mining areas had reached 56% of reference forest AGB, while in areas of heavy machinery mining it was only 18%. Mining type, stand age, and distance from the forest edge had a significant effect on AGB. The influence of the distance from the forest edge on AGB varies according to mining type because the effects of species diversity on AGB are mediated by the distance from the forest edge. Our results clearly showed the dynamics of AGB recovery across a secondary succession after goldmining, and the contrasting responses of AGB between the two mining types. Our study disentangles the importance of key factors in forest recovery after mining and improves understanding of the resilience of biomass accumulation in these highly degraded ecosystems. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

22 pages, 8427 KiB  
Article
Influence of Distance from Forest Edges on Spontaneous Vegetation Succession Following Small-Scale Gold Mining in the Southeast Peruvian Amazon
by Jorge Garate-Quispe, Manuel Velásquez Ramírez, Edwin Becerra-Lira, Sufer Baez-Quispe, Milagro Abril-Surichaqui, Liset Rodriguez-Achata, Adenka Muñoz-Ushñahua, Pedro Nascimento Herbay, Yoni Fernandez-Mamani, Gabriel Alarcon-Aguirre, Marx Herrera-Machaca, Litcely Hilares Vargas, Ronald Corvera Gomringer and Dennis del Castillo Torres
Diversity 2023, 15(6), 793; https://doi.org/10.3390/d15060793 - 19 Jun 2023
Cited by 6 | Viewed by 2975
Abstract
Few studies describe the factors that influence the natural regeneration in abandoned gold mining areas in the Amazon. Here we focus on the influence of the distance to the forest edge and abandonment time in a spontaneous succession of degraded areas by gold [...] Read more.
Few studies describe the factors that influence the natural regeneration in abandoned gold mining areas in the Amazon. Here we focus on the influence of the distance to the forest edge and abandonment time in a spontaneous succession of degraded areas by gold mining in the southeastern Peruvian Amazon. We assessed woody species composition (DBH ≥ 1 cm) and forest stand structure across a chronosequence (2–23 years). A total of 79 species belonging to 30 families were identified. The natural regeneration was dominated by Fabaceae, Malvaceae, and Urticaceae. Together, they represented 60% of the importance index. Cecropia membranacea and Ochroma pyramidale were the dominant pioneer species at the initial successional stage. The basal area and species diversity were directly related to time after abandonment and inversely related to the distance to forest edges. The distance-based redundancy analysis showed that more of the variation in species composition was explained by distance to the forest edge than the abandonment time. Our study revealed that regeneration was relatively slow and provided evidence that the distance to the forest edge is important for natural regeneration in areas degraded by gold mining. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

Back to TopTop