Vegetation Changes in Space and Time—A Special Issue on Plant Succession and Vegetation Dynamics
1. Introduction
2. Views and Hypotheses on Vegetation Dynamics over Time
- Nudation (disclosure of the substrate by disturbance);
- Migration (immigration of species);
- Ecesis (establishment);
- Competition;
- Reaction (location modification);
- Stabilization (establishment of a stable climax society).
- Ruderals (R, mainly annual and perennial herbs) immediately colonize after disturbances, grow fast, reproduce rapidly, and have a short lifespan.
- Competitors (C, including various lifeforms from perennial herbs to trees) obtain limiting resources through fast horizontal or vertical expansion and growth, and are adapted to productive, little disturbed habitats.
- Stress tolerators (S, lichens, mosses, perennial plants) persist through slow growth and conservative resource use, and are adapted to unproductive, stressful habitats with little disturbance only.
3. Current Perspectives on Vegetation Dynamics
3.1. Directional Succession
- Getting there: diaspores must reach the new ground, which requires suitable plants to be nearby for dispersal.
- Establish: seeds must germinate and establish themselves; success might also depend on the ability of species to dormancy, the stress tolerance of the species, and the presence of “safe sites”.
- Growth: largely controlled by the site resources (nutrients, water, light, etc.).
3.2. Cyclic Regeneration
- Macro-disturbances such as wildfires or strong storms trigger mass extinctions comparable to endogenously triggered cohort extinctions.
- Meso-disturbances with individual trees or groups of trees dying/falling due to exogenous factors (gap dynamics sensu stricto).
- Micro-disturbances allowing an interim invasion of certain species due to the small-scale gaps caused by the death of individual, mostly non-tree species. While these species disappear in one location, they easily colonize newly created gaps (“carousel dynamics” [72]).
4. A Broad Range of Questions Needs a Broad Range of Methods
Acknowledgments
Conflicts of Interest
References
- Kneitel, J. Successional Changes in Communities. Nat. Educ. Knowl. 2010, 3, 41. [Google Scholar]
- Cooper, W.S. The fundamentals of vegetation change. Ecology 1926, 7, 391–413. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef]
- Chang, C.C.; Turner, B.L. Ecological succession in a changing world. J. Ecol. 2019, 107, 503–550. [Google Scholar] [CrossRef]
- Walker, L.R.; Wardle, D. A Plant succession as an integrator of contrasting ecological time scales. Trends Ecol. Evol. Sept. 2014, 29, 504–510. [Google Scholar] [CrossRef]
- Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [Google Scholar] [CrossRef]
- Janečková, P.; Tichý, L.; Walker, L. Global drivers influencing vegetation during succession: Factors and implications. J. Veg. Sci. 2024, 35, 13297. [Google Scholar] [CrossRef]
- Knapp, R. Vegetation Dynamics, Vegetation Dynamics. In Handbook of Vegetation Science; Springer: Dordrecht, The Netherlands, 1974; Volume 8. [Google Scholar]
- Glenn-Lewin, D.C.; van der Maarel, E. Patterns and processes of vegetation dynamics. In Plant Succession—Theory and Prediction; Glenn-Lewin, D.C., Peet, R.K., Veblen, T.T., Eds.; Population and Community Biology Series 11; Chapman and Hall: London, UK, 1992; pp. 11–59. [Google Scholar]
- Miles, J. Vegetation Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pickett, S.T.A.; Cadenasso, M.L.; Meiners, S.J. Ever since Clements: From Succession to Vegetation Dynamics and Understanding to Intervention. Appl. Veg. Sci. 2009, 12, 9–21. Available online: http://www.jstor.org/stable/27735041 (accessed on 19 June 2025). [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Meiners, S.J. Vegetation Dynamics. In Vegetation Ecology; van der Maarel, E., Franklin, J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Franklin, O.; Harrison, S.P.; Dewar, R.; Farrior, C.E.; Brännström, Å.; Dieckmann, U.; Pietsch, S.; Falster, D.; Cramer, W.; Loreau, M.; et al. Organizing principles for vegetation dynamics. Nat. Plants 2020, 6, 444–453. [Google Scholar] [CrossRef]
- Dierschke, H.; Goedecke, F. Forty years of symphenological research in a submontane calcareous beech forest under the influence of climate change. Flora Mediterr. 2022, 31, 257–270. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Plant Sociology. In The Study of Plant Communities; McGraw-Hill Book Company: New York, NY, USA, 1932. [Google Scholar]
- Poorter, L.; Amissah, L.; Bongers, F.; Hordijk, I.; Kok, J.; Laurance, S.G.W.; Lohbeck, M.; Martínez-Ramos, M.; Matsuo, T.; Meave, J.A.; et al. Successional theories. Biol. Rev. Camb. Philos. Soc. 2023, 98, 2049–2077. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; van der Sande, M.; Amissah, L.; Bongers, F.; Hordijk, I.; Kok, J.; Laurance, S.; Martinez-Ramos, M.; Matsuo, T.; Meave, J.; et al. A comprehensive framework for vegetation succession. Ecosphere 2024, 15, e4794. [Google Scholar] [CrossRef]
- Blumler, M.A.; Cole, A.; Flenley, J.; Schickhoff, U. History of biogeographical thought. In The SAGE-Handbook of Biogeography; Millington, A., Blumler, M., Schickhoff, U., Eds.; SAGE Publications Ltd.: New York, NY, USA, 2011; pp. 23–42. [Google Scholar]
- Pulsford, S.; Lindenmayer, D.; Driscoll, D. A succession of theories: Purging redundancy from disturbance theory. Biol. Rev. Camb. Philos. Soc. 2014, 91, 12163. [Google Scholar] [CrossRef]
- Hufnagl, L.; Mics, F. Introductory Chapter: Vegetation Dynamics, Basic Phenomena, and Processes. In Vegetation Dynamics, Changing Ecosystems and Human Responsibility; InTech Open: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Trudgill, S. The interactions between all neighbouring organisms: The roles of Charles Darwin, Ernst Haeckel and Eugenius Warming in the evolution of ideas on plant dynamics. Prog. Phys. Geogr. 2012, 36, 853–861. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1895. [Google Scholar]
- Wallace, A.R. Natural Selection and Tropical Nature; MacMillan and Co.: London, UK; New York, NY, USA, 1895. [Google Scholar]
- Köppen, W.; Wegener, A. Die Klimate der Geologischen Vorzeit; Borntraeger: Berlin, Germany, 1924. [Google Scholar]
- Milanković, M. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In Handbuch der Klimatologie, Bd. 1 (A): Allgemeine Klimalehre; Köppen, W., Geiger, R., Eds.; Borntraeger: Berlin, Germany, 1930. [Google Scholar]
- Wegener, A. Die Entstehung der Kontinente und Ozeane; Vieweg & Sohn: Braunschweig, Germany, 1915. [Google Scholar]
- von Humboldt, A.S. Ansichten der Natur Mit Wissenschaftlichen Erläuterungen; Cotta: Tübingen, Germany, 1808. [Google Scholar]
- Dureau de la Malle, A.J.C.A. Memoire sur l’alternance ou sur ce problème: La succession alternative dans la reproduction des especes végétales vivant en société, est-elle une loi générale de la nature? Ann. Des Sci. Nat. 1825, 15, 353–381. [Google Scholar]
- Warming, E. Plantesamfund—Grundtræk af den Økologiske Plantegeografi; Philipsens: Copenhagen, Denmark, 1895. [Google Scholar]
- Cowles, H. Ecological relation of the vegetation on sand dunes of Lake Michigan. Bot. Gaz. 1899, 27, 95–117+167–202+281–308+361–388. [Google Scholar] [CrossRef]
- Clements, F.E. Plant Succession: An Analysis of the Development of Vegetation; Publication No. 242; Carnegie Institution of Washington: Washington, WA, USA, 1916. [Google Scholar]
- Tansley, A.G. The use and abuse of vegetational concepts and terms. Ecology 1935, 16, 284–307. [Google Scholar] [CrossRef]
- Egler, F.E. Vegetation science concepts. 1. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 1954, 4, 412–417. [Google Scholar] [CrossRef]
- Connell, J.H.; Slatyer, R.O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1977, 111, 1119–1144. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Collins, S.L.; Armesto, J.J. Models, mechanisms and pathways of succession. Bot. Rev. 1987, 53, 335–371. [Google Scholar] [CrossRef]
- Walker, L.; Chapin, F.S., III. Interactions among Processes Controlling Successional Change. Oikos 1987, 50, 131–135. [Google Scholar] [CrossRef]
- Gleason, H.A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 1926, 53, 7–26. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies and Vegetation Processes; John Wiley & Sons Ltd.: Chichester, UK, 1979. [Google Scholar]
- Noble, I.; Slatyer, R. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 1980, 43, 5–21. [Google Scholar] [CrossRef]
- Tilman, D. The resource-ratio hypothesis of plant succession. Am. Nat. 1985, 125, 827–852. [Google Scholar] [CrossRef]
- Huston, M.; Smith, T. Plant succession– life history and competition. Am. Nat. 1987, 130, 168–198. [Google Scholar] [CrossRef]
- Watt, A.S. Pattern and process in the plant community. J. Ecol. 1947, 35, 1–22. [Google Scholar] [CrossRef]
- Budowski, C.G. Distribution of tropical American rain-forest species in the light of successional processes. Turrialba 1965, 15, 40–42. [Google Scholar]
- Oliver, C.D. Forest development in North America following major disturbances. For. Ecol. Manag. 1980, 3, 153–168. [Google Scholar] [CrossRef]
- Yarranton, G.; Morrison, R. 0Spatial dynamics of a primary succession: Nucleation. J. Ecol. 1974, 62, 417–428. [Google Scholar] [CrossRef]
- Odum, E.P. The strategy of ecosystem development: An understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science 1969, 164, 262–270. [Google Scholar] [CrossRef]
- Arroyo-Rodriguez, V.; Melo, F.P.; Martinez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Norden, N.; Santos, B.A.; Leal, I.R.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Dent, D.H.; Estrada-Villegas, S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol. Evol. 2021, 36, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Balvanera, P.; Paz, H.; Arreola-Villa, F.; Bhaskar, R.; Bongers, F.; Cortés, S.; del Val, E.; García-Frapolli, E.; Gavito, M.E.; Gonzalez Esquivel, C.E. Social ecological dynamics of tropical secondary forests. For. Ecol. Manag. 2021, 496, 119369. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Junqueira, A.B.; Crouzeilles, R.; Peña-Claros, M.; Mesquita, R.C.; Bongers, F. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biol. Rev. 2021, 96, 1114–1134. [Google Scholar] [CrossRef]
- Pickett, S.T.A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology: Approaches and Alternatives; Likens, G.E., Ed.; Springer: New York, NY, USA; pp. 110–135.
- Walker, L.R.; Wardle, D.A.; Bardgett, R.D.; Clarkson, B.D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 2010, 98, 725–736. [Google Scholar] [CrossRef]
- Clements, F.E. Nature and structure of the climax. J. Ecol. 1936, 24, 252–284. [Google Scholar] [CrossRef]
- Richter, M. Allgemeine Pflanzengeographie; Teubner Studienbücher Geographie: Stuttgart, Germany, 1997; p. 256. [Google Scholar]
- Böhmer, H.J.; Richter, M. Regeneration of Plant Communities—An Attempt to Establish a Typology and Zonal System. Plant Res. Dev. 1997, 45, 74–88. [Google Scholar]
- Krebs, C. Ecology—The Experimental Analysis of Distribution and Abundance; Pearson International: Mississauga, ON, Canada, 2013. [Google Scholar]
- Müller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Peltzer, D.; Wardle, D.; Allison, V.; Baisden, T.; Bardgett, R.; Chadwick, O.; Condron, L.M.; Parfitt, R.; Porder, S.; Richardson, S.; et al. Understanding ecosystem retrogression. Ecol. Monogr. 2010, 80, 509–529. [Google Scholar] [CrossRef]
- Walker, L.R.; del Moral, R. Primary Succession and Ecosystem Rehabilitation; Cambridge University Press: Cambridge, UK, 2003; p. 442. [Google Scholar]
- Bradshaw, A.D. Introduction: Understanding the fundamentals of succession. In Primary Succession on Land; Miles, J., Walton, D.W.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1993; pp. 1–3. [Google Scholar]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Chapin, F.S., III. Physiological control over plant establishment in primary succession. In Primary Succession on Land; Miles, J., Walton, D.W.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1993; pp. 161–178. [Google Scholar]
- Duan, J.; Jia, Z.; Ge, S.; Li, Y.; Kang, D.; Li, J. Dominant Species Composition, Environmental Characteristics and Dynamics of Forests with Picea jezoensis Trees in Northeast China. Diversity 2024, 16, 731. [Google Scholar] [CrossRef]
- De Giuli, M.; Winkler, M.; Deola, T.; Henschel, J.; Sass, O.; Wolff, P.; Jentsch, A. Arrested Succession on Fire-Affected Slopes in the Krummholz Zone and Subalpine Forest of the Northern Limestone Alps. Diversity 2024, 16, 366. [Google Scholar] [CrossRef]
- Remmert, H. The mosaic-cycle concept of ecosystems—An overview. In Ecological Studies Bd. 85; Remmert, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–21. [Google Scholar]
- Müller-Dombois, D. Natural Dieback in Forests. BioScience 1987, 37, 575–583. [Google Scholar] [CrossRef]
- Rebertus, A.J.; Veblen, T.T.; Kitzberger, T. Gap formation and dieback in Fuego-Patagonian Nothofagus forests. Phytocoenologia 1993, 23, 581–599. [Google Scholar] [CrossRef]
- White, P.S.; Pickett, S.T.A. (Eds.) Natural disturbance and patch dynamics: An introduction. In Natural Disturbance and Patch Dynamics; Acadamic Press: San Diego, CA, USA, 1985; pp. 3–13. [Google Scholar]
- Garate-Quispe, J.; Velásquez Ramírez, M.; Becerra-Lira, E.; Baez-Quispe, S.; Abril-Surichaqui, M.; Rodriguez-Achata, L.; Muñoz-Ushñahua, A.; Nascimento Herbay, P.; Fernandez-Mamani, Y.; Alarcon-Aguirre, G.; et al. Influence of Distance from Forest Edges on Spontaneous Vegetation Succession Following Small-Scale Gold Mining in the Southeast Peruvian Amazon. Diversity 2023, 15, 793. [Google Scholar] [CrossRef]
- Garate-Quispe, J.; Herrera-Machaca, M.; Pareja Auquipata, V.; Alarcón Aguirre, G.; Baez Quispe, S.; Carpio-Vargas, E.E. Resilience of Aboveground Biomass of Secondary Forests Following the Abandonment of Gold Mining Activity in the Southeastern Peruvian Amazon. Diversity 2024, 16, 233. [Google Scholar] [CrossRef]
- Rodríguez-León, C.H.; Sterling, A.; Trujillo-Briñez, A.; Suárez-Córdoba, Y.D.; Roa-Fuentes, L.L. Forest Attribute Dynamics in Secondary Forests: Insights for Advancing Ecological Restoration and Transformative Territorial Management in the Amazon. Diversity 2025, 17, 39. [Google Scholar] [CrossRef]
- van der Maarel, E.; Sykes, M.T. Small scale species turnover in a limestone grassland: The carousel model and some comments on the niche concept. J. Veg. Sci. 1993, 4, 179–188. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, R.; Díaz, I.A.; Christie, D.A.; Lara, A. Early Vegetation Recovery After the 2008–2009 Explosive Eruption of the Chaitén Volcano, Chile. Diversity 2025, 17, 14. [Google Scholar] [CrossRef]
- Nasibullina, A.; Tiebel, K.; Wagner, S. Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts. Diversity 2024, 16, 376. [Google Scholar] [CrossRef]
- Abella, S.R.; Chiquoine, L.P.; Bailey, E.C.; Porter, S.L.; Morrison, C.D.; Farris, C.A.; Fox, J.E. Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients. Diversity 2025, 17, 88. [Google Scholar] [CrossRef]
- Richter, M. Vegetation development before, during, and after El Niño 1997/98 in Northwestern Perú. Lyonia 2005, 8, 19–27. Available online: http://www.lyonia.org/viewIssue.php?volumeID=18 (accessed on 19 June 2025).
- Kupcinskiene, E.; Budreviciute, R.; Jasionyte, V.; Simanaviciute, L.; Jociene, L.; Krokaite-Kudakiene, E.; Rekasius, T.; Marozas, V. Allelopathic Properties of the Species Comprising Communities of Invasive Impatiens spp. and Antioxidant System of Invaders’ Populations. Diversity 2025, 17, 20. [Google Scholar] [CrossRef]
- O’Connell, M.; Wolters, S. Holocene flora, vegetation and land-use changes on Dingle peninsula, south-western Ireland, as reflected in pollen analytical, archaeological and historical records. Diversity 2025, 17, 456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fickert, T.; Richter, M. Vegetation Changes in Space and Time—A Special Issue on Plant Succession and Vegetation Dynamics. Diversity 2025, 17, 482. https://doi.org/10.3390/d17070482
Fickert T, Richter M. Vegetation Changes in Space and Time—A Special Issue on Plant Succession and Vegetation Dynamics. Diversity. 2025; 17(7):482. https://doi.org/10.3390/d17070482
Chicago/Turabian StyleFickert, Thomas, and Michael Richter. 2025. "Vegetation Changes in Space and Time—A Special Issue on Plant Succession and Vegetation Dynamics" Diversity 17, no. 7: 482. https://doi.org/10.3390/d17070482
APA StyleFickert, T., & Richter, M. (2025). Vegetation Changes in Space and Time—A Special Issue on Plant Succession and Vegetation Dynamics. Diversity, 17(7), 482. https://doi.org/10.3390/d17070482