Lesion Detection and Analysis Using Artificial Intelligence, Third Edition

A special issue of Diagnostics (ISSN 2075-4418). This special issue belongs to the section "Machine Learning and Artificial Intelligence in Diagnostics".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 4521

Special Issue Editors


E-Mail Website
Guest Editor
Department of Radiology, University of Cagliari, 09042 Cagliari, Italy
Interests: neuroradiology; vascular imaging; cardiovascular imaging
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Stroke Diagnostic and Monitoring Division, AtheroPoint LLC, Roseville, CA 95661, USA
2. Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA
Interests: AI (artificial intelligence); medical imaging (ultrasound, MRI, CT); computer-aided diagnosis; machine learning; deep learning; hybrid deep learning; cardiovascular/stroke risk
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Artificial intelligence (AI), including deep learning and machine learning, is currently undergoing rapid development, having garnered substantial public attention in recent years. This Special Issue plans to focus on topics and issues regarding the development AI to become more meaningfully intelligent for lesion detection and analysis, scientific validations of AI systems, clinical evaluations of AI systems, bias detection in AI systems, high-speed AI systems, and edge-devices for AI systems, with all these facets of AI enveloping different branches of medicine and leading to personalized and precision medicine.

Prof. Dr. Luca Saba
Dr. Jasjit S. Suri
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • artificial intelligence
  • deep learning
  • machine learning
  • lesion detection and analysis
  • diagnosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 2896 KiB  
Article
Explainable CNN–Radiomics Fusion and Ensemble Learning for Multimodal Lesion Classification in Dental Radiographs
by Zuhal Can and Emre Aydin
Diagnostics 2025, 15(16), 1997; https://doi.org/10.3390/diagnostics15161997 - 9 Aug 2025
Viewed by 197
Abstract
Background/Objectives: Clinicians routinely rely on periapical radiographs to identify root-end disease, but interpretation errors and inconsistent readings compromise diagnostic accuracy. We, therefore, developed an explainable, multimodal AI framework that (i) fuses two data modalities, deep CNN embeddings and radiomic texture descriptors that [...] Read more.
Background/Objectives: Clinicians routinely rely on periapical radiographs to identify root-end disease, but interpretation errors and inconsistent readings compromise diagnostic accuracy. We, therefore, developed an explainable, multimodal AI framework that (i) fuses two data modalities, deep CNN embeddings and radiomic texture descriptors that are extracted only from lesion-relevant pixels selected by Grad-CAM, and (ii) makes every prediction transparent through dual-layer explainability (pixel-level Grad-CAM heatmaps + feature-level SHAP values). Methods: A dataset of 2285 periapical radiographs was processed using six CNN architectures (EfficientNet-B1/B4/V2M/V2S, ResNet-50, Xception). For each image, a Grad-CAM heatmap generated from the penultimate layer of the CNN was thresholded to create a binary mask that delineated the region most responsible for the network’s decision. Radiomic features (first-order, GLCM, GLRLM, GLDM, NGTDM, and shape2D) were then computed only within that mask, ensuring that handcrafted descriptors and learned embeddings referred to the same anatomic focus. The two feature streams were concatenated, optionally reduced by principal component analysis or SelectKBest, and fed to random forest or XGBoost classifiers; five-view test-time augmentation (TTA) was applied at inference. Pixel-level interpretability was provided by the original Grad-CAM, while SHAP quantified the contribution of each radiomic and deep feature to the final vote. Results: Raw CNNs achieved a ca. 52% accuracy and AUC values near 0.60. The multimodal fusion raised performance dramatically; the Xception + radiomics + random forest model achieved a 95.4% accuracy and an AUC of 0.9867, and adding TTA increased these to 96.3% and 0.9917, respectively. The top ensemble, Xception and EfficientNet-V2S fusion vectors classified with XGBoost under five-view TTA, reached a 97.16% accuracy and an AUC of 0.9914, with false-positive and false-negative rates of 4.6% and 0.9%, respectively. Grad-CAM heatmaps consistently highlighted periapical regions, while SHAP plots revealed that radiomic texture heterogeneity and high-level CNN features jointly contributed to correct classifications. Conclusions: By tightly integrating CNN embeddings, mask-targeted radiomics, and a two-tiered explainability stack (Grad-CAM + SHAP), the proposed system delivers state-of-the-art lesion detection and a transparent technique, addressing both accuracy and trust. Full article
Show Figures

Figure 1

26 pages, 4572 KiB  
Article
Transfer Learning-Based Ensemble of CNNs and Vision Transformers for Accurate Melanoma Diagnosis and Image Retrieval
by Murat Sarıateş and Erdal Özbay
Diagnostics 2025, 15(15), 1928; https://doi.org/10.3390/diagnostics15151928 - 31 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise [...] Read more.
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise of dermatologists, which can lead to variability and time inefficiencies. Consequently, there is an increasing demand for automated systems that can accurately classify melanoma lesions and retrieve visually similar cases to support clinical decision-making. Methods: This study proposes a transfer learning (TL)-based deep learning (DL) framework for the classification of melanoma images and the enhancement of content-based image retrieval (CBIR) systems. Pre-trained models including DenseNet121, InceptionV3, Vision Transformer (ViT), and Xception were employed to extract deep feature representations. These features were integrated using a weighted fusion strategy and classified through an Ensemble learning approach designed to capitalize on the complementary strengths of the individual models. The performance of the proposed system was evaluated using classification accuracy and mean Average Precision (mAP) metrics. Results: Experimental evaluations demonstrated that the proposed Ensemble model significantly outperformed each standalone model in both classification and retrieval tasks. The Ensemble approach achieved a classification accuracy of 95.25%. In the CBIR task, the system attained a mean Average Precision (mAP) score of 0.9538, indicating high retrieval effectiveness. The performance gains were attributed to the synergistic integration of features from diverse model architectures through the ensemble and fusion strategies. Conclusions: The findings underscore the effectiveness of TL-based DL models in automating melanoma image classification and enhancing CBIR systems. The integration of deep features from multiple pre-trained models using an Ensemble approach not only improved accuracy but also demonstrated robustness in feature generalization. This approach holds promise for integration into clinical workflows, offering improved diagnostic accuracy and efficiency in the early detection of melanoma. Full article
Show Figures

Figure 1

17 pages, 6870 KiB  
Article
Edge- and Color–Texture-Aware Bag-of-Local-Features Model for Accurate and Interpretable Skin Lesion Diagnosis
by Dichao Liu and Kenji Suzuki
Diagnostics 2025, 15(15), 1883; https://doi.org/10.3390/diagnostics15151883 - 27 Jul 2025
Viewed by 408
Abstract
Background/Objectives: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features [...] Read more.
Background/Objectives: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features often have large receptive fields, resulting in poor spatial alignment with the input image. Second, the design of most deep models neglects interpretable traditional visual features inspired by clinical experience, such as color–texture and edge features. This study aims to propose a novel approach integrating deep learning with traditional visual features to handle these limitations. Methods: We introduce the edge- and color–texture-aware bag-of-local-features model (ECT-BoFM), which limits the receptive field of deep features to a small size and incorporates edge and color–texture information from traditional features. A non-rigid reconstruction strategy ensures that traditional features enhance rather than constrain the model’s performance. Results: Experiments on the ISIC 2018 and 2019 datasets demonstrated that ECT-BoFM yields precise heatmaps and achieves high diagnostic performance, outperforming state-of-the-art methods. Furthermore, training models using only a small number of the most predictive patches identified by ECT-BoFM achieved diagnostic performance comparable to that obtained using full images, demonstrating its efficiency in exploring key clues. Conclusions: ECT-BoFM successfully combines deep learning and traditional visual features, addressing the interpretability and diagnostic accuracy challenges of existing methods. ECT-BoFM provides an interpretable and accurate framework for skin lesion diagnosis, advancing the integration of AI in dermatological research and clinical applications. Full article
Show Figures

Figure 1

18 pages, 2773 KiB  
Article
ViSwNeXtNet Deep Patch-Wise Ensemble of Vision Transformers and ConvNeXt for Robust Binary Histopathology Classification
by Özgen Arslan Solmaz and Burak Tasci
Diagnostics 2025, 15(12), 1507; https://doi.org/10.3390/diagnostics15121507 - 13 Jun 2025
Viewed by 710
Abstract
Background: Intestinal metaplasia (IM) is a precancerous gastric condition that requires accurate histopathological diagnosis to enable early intervention and cancer prevention. Traditional evaluation of H&E-stained tissue slides can be labor-intensive and prone to interobserver variability. Recent advances in deep learning, particularly transformer-based models, [...] Read more.
Background: Intestinal metaplasia (IM) is a precancerous gastric condition that requires accurate histopathological diagnosis to enable early intervention and cancer prevention. Traditional evaluation of H&E-stained tissue slides can be labor-intensive and prone to interobserver variability. Recent advances in deep learning, particularly transformer-based models, offer promising tools for improving diagnostic accuracy. Methods: We propose ViSwNeXtNet, a novel patch-wise ensemble framework that integrates three transformer-based architectures—ConvNeXt-Tiny, Swin-Tiny, and ViT-Base—for deep feature extraction. Features from each model (12,288 per model) were concatenated into a 36,864-dimensional vector and refined using iterative neighborhood component analysis (INCA) to select the most discriminative 565 features. A quadratic SVM classifier was trained using these selected features. The model was evaluated on two datasets: (1) a custom-collected dataset consisting of 516 intestinal metaplasia cases and 521 control cases, and (2) the public GasHisSDB dataset, which includes 20,160 normal and 13,124 abnormal H&E-stained image patches of size 160 × 160 pixels. Results: On the collected dataset, the proposed method achieved 94.41% accuracy, 94.63% sensitivity, and 94.40% F1 score. On the GasHisSDB dataset, it reached 99.20% accuracy, 99.39% sensitivity, and 99.16% F1 score, outperforming individual backbone models and demonstrating strong generalizability across datasets. Conclusions: ViSwNeXtNet successfully combines local, regional, and global representations of tissue structure through an ensemble of transformer-based models. The addition of INCA-based feature selection significantly enhances classification performance while reducing dimensionality. These findings suggest the method’s potential for integration into clinical pathology workflows. Future work will focus on multiclass classification, multicenter validation, and integration of explainable AI techniques. Full article
Show Figures

Figure 1

28 pages, 8822 KiB  
Article
Multiclassification of Colorectal Polyps from Colonoscopy Images Using AI for Early Diagnosis
by Jothiraj Selvaraj, Kishwar Sadaf, Shabnam Mohamed Aslam and Snekhalatha Umapathy
Diagnostics 2025, 15(10), 1285; https://doi.org/10.3390/diagnostics15101285 - 20 May 2025
Cited by 1 | Viewed by 969
Abstract
Background/Objectives: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide, emphasizing the critical need for the accurate classification of precancerous polyps. This research presents an extensive analysis of the multiclassification framework leveraging various deep learning (DL) architectures for the [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide, emphasizing the critical need for the accurate classification of precancerous polyps. This research presents an extensive analysis of the multiclassification framework leveraging various deep learning (DL) architectures for the automated classification of colorectal polyps from colonoscopy images. Methods: The proposed methodology integrates real-time data for training and utilizes a publicly available dataset for testing, ensuring generalizability. The real-time images were cautiously annotated and verified by a panel of experts, including post-graduate medical doctors and gastroenterology specialists. The DL models were designed to categorize the preprocessed colonoscopy images into four clinically significant classes: hyperplastic, serrated, adenoma, and normal. A suite of state-of-the-art models, including VGG16, VGG19, ResNet50, DenseNet121, EfficientNetV2, InceptionNetV3, Vision Transformer (ViT), and the custom-developed CRP-ViT, were trained and rigorously evaluated for this task. Results: Notably, the CRP-ViT model exhibited superior capability in capturing intricate features, achieving an impressive accuracy of 97.28% during training and 96.02% during validation with real-time images. Furthermore, the model demonstrated remarkable performance during testing on the public dataset, attaining an accuracy of 95.69%. To facilitate real-time interaction and clinical applicability, a user-friendly interface was developed using Gradio, allowing healthcare professionals to upload colonoscopy images and receive instant classification results. Conclusions: The CRP-ViT model effectively predicts and categorizes colonoscopy images into clinically relevant classes, aiding gastroenterologists in decision-making. This study highlights the potential of integrating AI-driven models into routine clinical practice to improve colorectal cancer screening outcomes and reduce diagnostic variability. Full article
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 3872 KiB  
Review
Transformer and Attention-Based Architectures for Segmentation of Coronary Arterial Walls in Intravascular Ultrasound: A Narrative Review
by Vandana Kumari, Alok Katiyar, Mrinalini Bhagawati, Mahesh Maindarkar, Siddharth Gupta, Sudip Paul, Tisha Chhabra, Alberto Boi, Ekta Tiwari, Vijay Rathore, Inder M. Singh, Mustafa Al-Maini, Vinod Anand, Luca Saba and Jasjit S. Suri
Diagnostics 2025, 15(7), 848; https://doi.org/10.3390/diagnostics15070848 - 26 Mar 2025
Cited by 1 | Viewed by 1309
Abstract
Background: The leading global cause of death is coronary artery disease (CAD), necessitating early and precise diagnosis. Intravascular ultrasound (IVUS) is a sophisticated imaging technique that provides detailed visualization of coronary arteries. However, the methods for segmenting walls in the IVUS scan into [...] Read more.
Background: The leading global cause of death is coronary artery disease (CAD), necessitating early and precise diagnosis. Intravascular ultrasound (IVUS) is a sophisticated imaging technique that provides detailed visualization of coronary arteries. However, the methods for segmenting walls in the IVUS scan into internal wall structures and quantifying plaque are still evolving. This study explores the use of transformers and attention-based models to improve diagnostic accuracy for wall segmentation in IVUS scans. Thus, the objective is to explore the application of transformer models for wall segmentation in IVUS scans to assess their inherent biases in artificial intelligence systems for improving diagnostic accuracy. Methods: By employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, we pinpointed and examined the top strategies for coronary wall segmentation using transformer-based techniques, assessing their traits, scientific soundness, and clinical relevancy. Coronary artery wall thickness is determined by using the boundaries (inner: lumen-intima and outer: media-adventitia) through cross-sectional IVUS scans. Additionally, it is the first to investigate biases in deep learning (DL) systems that are associated with IVUS scan wall segmentation. Finally, the study incorporates explainable AI (XAI) concepts into the DL structure for IVUS scan wall segmentation. Findings: Because of its capacity to automatically extract features at numerous scales in encoders, rebuild segmented pictures via decoders, and fuse variations through skip connections, the UNet and transformer-based model stands out as an efficient technique for segmenting coronary walls in IVUS scans. Conclusions: The investigation underscores a deficiency in incentives for embracing XAI and pruned AI (PAI) models, with no UNet systems attaining a bias-free configuration. Shifting from theoretical study to practical usage is crucial to bolstering clinical evaluation and deployment. Full article
Show Figures

Figure 1

Back to TopTop