Wildfire Occurrence and Damage Dataset for Chile (1985–2024): A Real Data Resource for Early Detection and Prevention Systems
Abstract
1. Introduction
2. Data Description
Regional Statistical Summaries
3. Materials and Methods
3.1. Data Acquisition and Preprocessing
3.2. Variable Engineering
- Standardized ignition cause categories: Events are recoded into anthropogenic, natural (e.g., lightning), or unknown, improving consistency across decades.
- Severity indicators: Burned area is normalized by municipal area, producing a relative severity index (burned area per square kilometer).
- Economic adjustment: Reported direct damages are corrected for inflation to constant 2024 US dollars, based on official Chilean CPI data.
- Temporal metrics: New variables such as “fire seasonality” (month of occurrence) are derived, enabling seasonal trend analyses.
3.3. Temporal Aggregation
3.4. Quality Assessment
3.5. Data Availability and Ethical Considerations
4. Scientific Relevance and Considerations
- The construction and evaluation of deep reinforcement learning (DRL) frameworks focused on wildfire early warning and prevention, as explored in recent comparative studies [38].
- The design of dynamic risk maps and decision-support systems for public safety and resource allocation.
5. Conclusions
- The dataset significantly enriches the available resources for studying wildfire occurrence, burned areas, human impacts, and economic losses in Chile, a country facing increasing wildfire risks due to climate and land-use changes.
- Temporal aggregation and standardized variable engineering facilitate its direct application to machine learning, deep learning, and statistical modeling tasks aimed at fire prediction, risk mapping, and policy evaluation [18].
- Scientific relevance extends beyond national boundaries, as the dataset provides a valuable benchmark for cross-country comparative studies and contributes to global efforts in understanding and mitigating wildfire hazards.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Parisien, M.A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2014, 5, 49. [Google Scholar] [CrossRef]
- Corporación Nacional Forestal (CONAF). Wildfire Reports 1985–2024. 2024. Available online: http://www.conaf.cl (accessed on 15 April 2025).
- Johnston, J.M.; Woolford, D.G.; Martell, D.L.; Wotton, B.M. Wildfire prediction and management using machine learning: A review. Curr. For. Rep. 2020, 6, 1–18. [Google Scholar]
- Rossetti, I.; Cogoni, D.; Calderisi, G.; Fenu, G. Short-Term Effects and Vegetation Response after a Megafire in a Mediterranean Area. Land 2022, 11, 2328. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Corporación Nacional Forestal (CONAF). Annual Report on Wildfire Management in Chile; Corporación Nacional Forestal (CONAF): Santiago, Chile, 2021. [Google Scholar]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Rahimifard, S.; Trollman, H. UN Sustainable Development Goals: An engineering perspective. Int. J. Sustain. Eng. 2018, 11, 1–3. [Google Scholar] [CrossRef]
- Peñalba, O.C.; Vargas, W.M. Synoptic and climatic variability associated with forest fires in South America. Int. J. Climatol. 2018, 38, 4134–4145. [Google Scholar] [CrossRef]
- Ortega, M.; y Silva, F.R.; Molina, J.R. Modeling fuel break effectiveness in southern Spain wildfires. Fire Ecol. 2024, 20, 40. [Google Scholar] [CrossRef]
- Giuseppe, F.D.; McNorton, J.; Lombardi, A.; Wetterhall, F. Global data-driven prediction of fire activity. Nat. Commun. 2025, 16, 2918. [Google Scholar] [CrossRef]
- Castillo, M.; Julio, G.; Garfias, R. Current status of risk and prognosis of forest fires in Chile. Progress and future challenges. Wildfire Hazards Risks Disasters 2014, 59–75. [Google Scholar] [CrossRef]
- Castillo, M.; Saavedra, J.; Quiñones, T.; Osses, T.; Torres, M.J. Assessment of the Occurrence of Forest Fires in Pandemic Period by COVID-19 in Chile. Preliminary Backgrounds. Int. J. Environ. Res. Public Health 2021, 18, 10529. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mathiesen, C.; Ruane, S.; March, A. Integrating wildfire risk management and spatial planning—A historical review of two Australian planning systems. Int. J. Disaster Risk Reduct. 2021, 53, 101984. [Google Scholar] [CrossRef]
- Bispo, R.; Vieira, F.G.; Bachir, N.; Espadinha-Cruz, P.; Lopes, J.P.; Penha, A.; Marques, F.J.; Grilo, A. Spatial modelling and mapping of urban fire occurrence in Portugal. Fire Saf. J. 2023, 138, 103802. [Google Scholar] [CrossRef]
- Andrianarivony, H.S.; Akhloufi, M.A. Machine Learning and Deep Learning for Wildfire Spread Prediction: A Review. Fire 2024, 7, 482. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Using Satellite Remote Sensing Data: Detection, Mapping, and Prediction. Fire 2023, 6, 192. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Good, I.J. Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables. Ann. Math. Stat. 1963, 34, 911–934. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, L.; Liu, Y.; Zhang, X. Spatiotemporal Wildfire Prediction Using a Hybrid CNN-LSTM Deep Learning Model. Int. J. Wildland Fire 2023, 32, 123–135. [Google Scholar]
- Yun, S.; Lee, J.; Kim, S.H. BiLSTM-Based Wildfire Ignition Prediction Using Environmental Time Series Data. Appl. Sci. 2022, 12, 9475. [Google Scholar]
- Villagra, P.; Paula, S. Wildfire Management in Chile: Increasing Risks Call for More Resilient Communities. Environ. Sci. Policy Sustain. Dev. 2021, 63, 4–14. [Google Scholar] [CrossRef]
- González, M.; Sapiains, R.; Gómez-González, S.; Garreaud, R.; Miranda, A.; Galleguillos, M.; Jacques, M.; Pauchard, A.; Hoyos, J.; Cordero, L.; et al. Incendios Forestales en Chile: Causas, Impactos y Resiliencia; Centro de Ciencia del Clima y la Resiliencia (CR2): Santiago, Chile, 2020; Available online: https://www.cr2.cl/wp-content/uploads/2020/01/Informe-CR2-IncendiosforestalesenChile.pdf (accessed on 19 June 2025).
- Duane, A.; Castellnou, M.; Brotons, L. Towards a Comprehensive Look at Global Drivers of Novel Extreme Wildfire Events. Clim. Chang. 2021, 165, 43. [Google Scholar] [CrossRef]
- Altamimi, A.; Lagoa, C.; Borges, J.G.; McDill, M.E.; Andriotis, C.P.; Papakonstantinou, K.G. Large-Scale Wildfire Mitigation Through Deep Reinforcement Learning. Front. For. Glob. Chang. 2022, 5, 734330. [Google Scholar] [CrossRef]
- Bot, K.; Borges, J.G. A Systematic Review of Applications of Machine Learning Techniques for Wildfire Management Decision Support. Inventions 2022, 7, 15. [Google Scholar] [CrossRef]
- Pérez-Porras, F.J.; Triviño-Tarradas, P.; Cima-Rodríguez, C.; Meroño-de Larriva, J.E.; García-Ferrer, A.; Mesas-Carrascosa, F.J. Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires. Sensors 2021, 21, 3694. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Libonati, R.; Rodrigues, J.A.; Pereira, J.M.C. A comprehensive characterization of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sens. Environ. 2021, 252, 112115. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z. Assessing the Accuracy of MODIS MCD64A1 C6 and FireCCI51 Burned Area Products in Mediterranean Ecosystems. Remote Sens. 2022, 14, 602. [Google Scholar] [CrossRef]
- Faulstich, S.D.; Schissler, A.G.; Strickland, M.J.; Holmes, H.A. Statistical Comparison and Assessment of Four Fire Emissions Inventories for 2013 and a Large Wildfire in the Western United States. Fire 2022, 5, 27. [Google Scholar] [CrossRef]
- Chen, D.; Shevade, V.; Baer, A.; Loboda, T.V. Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products. Remote Sens. 2021, 13, 4145. [Google Scholar] [CrossRef]
- Canosa, I.V.; Ford, J.; Paavola, J.; Burnasheva, D. Community Risk and Resilience to Wildfires: Rethinking the Complex Human–Climate–Fire Relationship in High-Latitude Regions. Sustainability 2024, 16, 957. [Google Scholar] [CrossRef]
- Pizarro-Tapia, R.; González-Leiva, F.; Valdés-Pineda, R.; Ingram, B.; Sangüesa, C.; Vallejos, C. A Rainfall Intensity Data Rescue Initiative for Central Chile Utilizing a Pluviograph Strip Charts Reader (PSCR). Water 2020, 12, 1887. [Google Scholar] [CrossRef]
- Pizarro, R.; Ingram, B.; Gonzalez-Leiva, F.; Valdés-Pineda, R.; Sangüesa, C.; Delgado, N.; García-Chevesich, P.; Valdés, J.B. WEBSEIDF: A Web-Based System for the Estimation of IDF Curves in Central Chile. Hydrology 2018, 5, 40. [Google Scholar] [CrossRef]
- Sangüesa, C.; Pizarro, R.; Ingram, B.; Ibáñez, A.; Rivera, D.; García-Chevesich, P.; Pino, J.; Pérez, F.; Balocchi, F.; Peña, F. Comparing Methods for the Regionalization of Intensity—Duration—Frequency (IDF) Curve Parameters in Sparsely-Gauged and Ungauged Areas of Central Chile. Hydrology 2023, 10, 179. [Google Scholar] [CrossRef]
- Vidal-Silva, C.; Pizarro, R.; Castillo-Soto, M.; Ingram, B.; de la Fuente, C.; Duarte, V.; Sangüesa, C.; Ibañez, A. A Comparative Study of a Deep Reinforcement Learning Solution and Alternative Deep Learning Models for Wildfire Prediction. Appl. Sci. 2025, 15, 3990. [Google Scholar] [CrossRef]
- Pizarro, R.; Borcoski, F.; Ingram, B.; Bustamante-Ortega, R.; Sangüesa, C.; Ibáñez, A.; Toledo, C.; Vidal, C.; Garcia-Chevesich, P.A. Increases in the Amounts of Agricultural Surfaces and Their Impact on the Sustainability of Groundwater Resources in North-Central Chile. Sustainability 2024, 16, 7570. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Date of Event | Day/month/year format. |
Municipality | Official Chilean municipality name. |
Burned Area (ha) | Surface affected by the fire, in hectares. |
Ignition Cause | Human activities, natural causes, or unknown. |
Economic Losses (USD) | Estimated direct losses adjusted to 2024 value. |
Human Impact | Number of injuries, fatalities, evacuations. |
Operation | Affected Records (%) | Description |
---|---|---|
Removed | 0.8% | Duplicates, missing key fields |
Imputed | 1.6% | Ignition cause, municipality code, etc. |
Validated | 100% | Geospatial and temporal consistency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Silva, C.; Pizarro, R.; Castillo-Soto, M.; de la Fuente, C.; Duarte, V.; Sangüesa, C.; Ibañez, A.; Paredes, R.; Ingram, B. Wildfire Occurrence and Damage Dataset for Chile (1985–2024): A Real Data Resource for Early Detection and Prevention Systems. Data 2025, 10, 93. https://doi.org/10.3390/data10070093
Vidal-Silva C, Pizarro R, Castillo-Soto M, de la Fuente C, Duarte V, Sangüesa C, Ibañez A, Paredes R, Ingram B. Wildfire Occurrence and Damage Dataset for Chile (1985–2024): A Real Data Resource for Early Detection and Prevention Systems. Data. 2025; 10(7):93. https://doi.org/10.3390/data10070093
Chicago/Turabian StyleVidal-Silva, Cristian, Roberto Pizarro, Miguel Castillo-Soto, Claudia de la Fuente, Vannessa Duarte, Claudia Sangüesa, Alfredo Ibañez, Rodrigo Paredes, and Ben Ingram. 2025. "Wildfire Occurrence and Damage Dataset for Chile (1985–2024): A Real Data Resource for Early Detection and Prevention Systems" Data 10, no. 7: 93. https://doi.org/10.3390/data10070093
APA StyleVidal-Silva, C., Pizarro, R., Castillo-Soto, M., de la Fuente, C., Duarte, V., Sangüesa, C., Ibañez, A., Paredes, R., & Ingram, B. (2025). Wildfire Occurrence and Damage Dataset for Chile (1985–2024): A Real Data Resource for Early Detection and Prevention Systems. Data, 10(7), 93. https://doi.org/10.3390/data10070093