Special Issue "Gap Junctions and Connexins in Cancer Formation, Progression, and Therapy"

A special issue of Cancers (ISSN 2072-6694).

Deadline for manuscript submissions: closed (31 December 2018)

Special Issue Editor

Guest Editor
Dr. Randall J Ruch

Department of Cancer Biology, College of Medicine and Life Science, University of Toledo,Toledo, OH 43614, USA
Website | E-Mail
Interests: intercellular communication; gap junctions; tumor microenvironment; nongenotoxic carcinogenesis

Special Issue Information

Dear Colleagues,

Gap junctions are clusters of aqueous channels approximately 1.5 nm in diameter that directly connect the interiors of two apposed cells. The channels enable cell-to-cell diffusion of small molecules and ions (e.g., water, amino acids, simple sugars, second messengers, and microRNAs), but not larger, more complex molecules. The channels are comprised of connexins, of which twenty human forms are known.

Cancer cells typically have defects in gap junctions for many reasons that include deficient expression of connexins, defective connexin trafficking, and poor cell–cell adhesion. The restoration of gap junctions in many types of neoplastic cells normalizes their phenotype (decreased proliferation and tumorigenicity and increased sensitivity to therapy). Connexins also have functions independent of channel formation and can play roles in signal transduction and gene transcription. Some connexins may also enhance invasion and metastasis. Newer studies also suggest connexins impact cancer stem cell number and function and cancer cell dormancy. This Special Issue will highlight recent findings on the many roles of gap junctions and connexins in cancer development, progression, and therapeutic response.

Dr. Randall J. Ruch
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gap junctions
  • connexins
  • intercellular communication
  • tumor microenvironment
  • cancer dormancy
  • cancer stem cells
  • tumor promotion

Published Papers (15 papers)

View options order results:
result details:
Displaying articles 1-15
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Pannexin 2 Localizes at ER-Mitochondria Contact Sites
Cancers 2019, 11(3), 343; https://doi.org/10.3390/cancers11030343
Received: 30 January 2019 / Revised: 22 February 2019 / Accepted: 27 February 2019 / Published: 11 March 2019
PDF Full-text (14074 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Endomembrane specialization allows functional compartmentalization but imposes physical constraints to information flow within the cell. However, the evolution of an endomembrane system was associated with the emergence of contact sites facilitating communication between membrane-bound organelles. Contact sites between the endoplasmic reticulum (ER) and [...] Read more.
Endomembrane specialization allows functional compartmentalization but imposes physical constraints to information flow within the cell. However, the evolution of an endomembrane system was associated with the emergence of contact sites facilitating communication between membrane-bound organelles. Contact sites between the endoplasmic reticulum (ER) and mitochondria are highly conserved in terms of their morphological features but show surprising molecular diversity within and across eukaryote species. ER-mitochondria contact sites are thought to regulate key processes in oncogenesis but their molecular composition remains poorly characterized in mammalian cells. In this study, we investigate the localization of pannexin 2 (Panx2), a membrane channel protein showing tumor-suppressing properties in cancer cells. Using a combination of subcellular fractionation, particle tracking in live-cell, and immunogold electron microscopy, we show that Panx2 localizes at ER-mitochondria contact sites in mammalian cells and sensitizes cells to apoptotic stimuli. Full article
Figures

Figure 1

Open AccessArticle Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling
Cancers 2019, 11(3), 339; https://doi.org/10.3390/cancers11030339
Received: 3 January 2019 / Revised: 15 February 2019 / Accepted: 4 March 2019 / Published: 8 March 2019
PDF Full-text (6605 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
(1) Background: The expression of connexin 43 (Cx43) is disrupted in breast cancer, and re-expression of this protein in human breast cancer cell lines leads to decreased proliferation and invasiveness, suggesting a tumor suppressive role. This study aims to investigate the role of [...] Read more.
(1) Background: The expression of connexin 43 (Cx43) is disrupted in breast cancer, and re-expression of this protein in human breast cancer cell lines leads to decreased proliferation and invasiveness, suggesting a tumor suppressive role. This study aims to investigate the role of Cx43 in proliferation and invasion starting from non-neoplastic breast epithelium. (2) Methods: Nontumorigenic human mammary epithelial HMT-3522 S1 cells and Cx43 shRNA-transfected counterparts were cultured under 2-dimensional (2-D) and 3-D conditions. (3) Results: Silencing Cx43 induced mislocalization of β-catenin and Scrib from apicolateral membrane domains in glandular structures or acini formed in 3-D culture, suggesting the loss of apical polarity. Cell cycle entry and proliferation were enhanced, concomitantly with c-Myc and cyclin D1 upregulation, while no detectable activation of Wnt/β-catenin signaling was observed. Motility and invasion were also triggered and were associated with altered acinar morphology and activation of ERK1/2 and Rho GTPase signaling, which acts downstream of the noncanonical Wnt pathway. The invasion of Cx43-shRNA S1 cells was observed only under permissive stiffness of the extracellular matrix (ECM). (4) Conclusion: Our results suggest that Cx43 controls proliferation and invasion in the normal mammary epithelium in part by regulating noncanonical Wnt signaling. Full article
Figures

Figure 1

Open AccessArticle Insight into the Role and Regulation of Gap Junction Genes in Lung Cancer and Identification of Nuclear Cx43 as a Putative Biomarker of Poor Prognosis
Cancers 2019, 11(3), 320; https://doi.org/10.3390/cancers11030320
Received: 11 February 2019 / Revised: 25 February 2019 / Accepted: 2 March 2019 / Published: 6 March 2019
PDF Full-text (5714 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Direct intercellular communication, mediated by gap junctions formed by the connexin transmembrane protein family, is frequently dysregulated in cancer. Connexins have been described as tumour suppressors, but emerging evidence suggests that they can also act as tumour promoters. This feature is connexin- and [...] Read more.
Direct intercellular communication, mediated by gap junctions formed by the connexin transmembrane protein family, is frequently dysregulated in cancer. Connexins have been described as tumour suppressors, but emerging evidence suggests that they can also act as tumour promoters. This feature is connexin- and tissue-specific and may be mediated by complex signalling pathways through gap junctions or hemichannels or by completely junction-independent events. Lung cancer is the number one cancer in terms of mortality worldwide, and novel biomarkers and therapeutic targets are urgently needed. Our objective was to gain a better understanding of connexins in this setting. We used several in silico tools to analyse TCGA data in order to compare connexin mRNA expression between healthy lung tissue and lung tumours and correlated these results with gene methylation patterns. Using Kaplan-Meier plotter tools, we analysed a microarray dataset and an RNA-seq dataset of non-small cell lung tumours in order to correlate connexin expression with patient prognosis. We found that connexin mRNA expression is frequently either upregulated or downregulated in lung tumours. This correlated with both good and poor prognosis (overall survival) in a clear connexin isoform-dependent manner. These associations were strongly influenced by the histological subtype (adenocarcinoma versus squamous cell carcinoma). We present an overview of all connexins but particularly focus on four isoforms implicated in lung cancer: Cx26, Cx30.3, Cx32 and Cx43. We further analysed the protein expression and localization of Cx43 in a series of 73 human lung tumours. We identified a subset of tumours that exhibited a unique strong nuclear Cx43 expression pattern that predicted worse overall survival (p = 0.014). Upon sub-stratification, the prognostic value remained highly significant in the adenocarcinoma subtype (p = 0.002) but not in the squamous carcinoma subtype (p = 0.578). This finding highlights the importance of analysis of connexin expression at the protein level, particularly the subcellular localization. Elucidation of the underlying pathways regulating Cx43 localization may provide for novel therapeutic opportunities. Full article
Figures

Figure 1

Open AccessArticle Spatial Arrangements of Connexin43 in Cancer Related Cells and Re-Arrangements under Treatment Conditions: Investigations on the Nano-Scale by Super-Resolution Localization Light Microscopy
Cancers 2019, 11(3), 301; https://doi.org/10.3390/cancers11030301
Received: 18 January 2019 / Revised: 25 February 2019 / Accepted: 27 February 2019 / Published: 4 March 2019
PDF Full-text (6608 KB) | HTML Full-text | XML Full-text
Abstract
Cancer studies suggest that the spatial localization of connexin43 (Cx43) could play an important role during tumor genesis and the formation of metastasis. Cx43 has been shown to be upregulated in cancer cells; thereby a shift from Cx43 normal localization in gap junctions [...] Read more.
Cancer studies suggest that the spatial localization of connexin43 (Cx43) could play an important role during tumor genesis and the formation of metastasis. Cx43 has been shown to be upregulated in cancer cells; thereby a shift from Cx43 normal localization in gap junctions in the cell membrane towards a primarily cytoplasmic localization was observed in many studies. So far neither the spatial arrangements of Cx43 in breast cancer cells nor the effects of treatment outcome (ionizing radiation and antibody therapy) on the spatial arrangements of Cx43, have been microscopically studied on the nanoscale. This has brought up the idea to study the micro- and nanoscaled spatial Cx43 arrangements in a model of breast cancer-related cell types, i.e., SkBr3 breast cancer cells, BJ fibroblasts, and primary human internal mammary artery endothelial cells (HIMAECs). The cells were treated with neuregulin1 (NRG1), trastuzumab (Herceptin), or 6MeV-photon irradiation at a dose of 4 Gy. NRG1 stimulates further NRG1 release in the tumor endothelium that may lead to an enhanced tumor protective effect whereas Herceptin, used in antibody treatment, works in an antagonistic fashion to NRG1. After fluorescent labelling with specific antibodies, the molecular positions of Cx43 in the perinuclear cytosol and in the cell periphery at the membrane were determined for the three treatment related applications (NRG1, trastuzumab, 4 Gy irradiation) using confocal laser scanning microscopy (CLSM) and single molecule localization microscopy (SMLM). These techniques enable investigations of Cx43 enrichment and topological arrangements of Cx43 molecules from the micro-scale of a whole cell to the nano-scale of single molecules. In SkBr3 cells with and without radiation treatment high density accumulations were detected which seem to be diluted after NRG1 and trastuzumab treatment although the SMLM distance frequency distributions did not significantly vary. In BJ fibroblasts and HIMAECs differences between periphery and perinuclear cytosol were observed after the different treatment processes. HIMAECs showed significant Cx43 accumulation after NRG1, trastuzumab, and radiation treatment in the perinuclear region whereas in the periphery radiation has less influence as compared to the control. BJ cells were reacting to the treatments by Cx43 accumulations in the perinuclear region but also in the periphery. In conclusion, it was shown that by using CLSM and super-resolution SMLM, treatment effects on the spatial and thus functional arrangements of Cx43 became detectable for investigations of tumor response mechanisms. Full article
Figures

Graphical abstract

Open AccessArticle Phosphorylation-Dependent Intra-Domain Interaction of the Cx37 Carboxyl-Terminus Controls Cell Survival
Cancers 2019, 11(2), 188; https://doi.org/10.3390/cancers11020188
Received: 27 December 2018 / Revised: 1 February 2019 / Accepted: 2 February 2019 / Published: 6 February 2019
PDF Full-text (3441 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined [...] Read more.
Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined use of deletion and site specific (de)phospho-mimetic Cx37-CT mutants, our data suggest a phosphorylation-dependent interaction between the mid-tail (aa 273–317) and end-tail (aa 318–333) portions of the Cx37-CT that regulates cell survival. As detected by mass spectrometry, Cx37 was phosphorylated at serines 275, 321, and 328; phosphomimetic mutations of these sites resulted in cell death when expressed in rat insulinoma cells. Alanine substitution at S328, but not at S275 or S321, also triggered cell death. Cx37-S275D uniquely induced the death of only low density, non-contact forming cells, but neither hemichannel open probability nor channel conductance distinguished death-inducing mutants. As channel function is necessary for cell death, together the data suggest that the phosphorylation state of the Cx37-CT controls an intra-domain interaction within the CT that modifies channel function and induces cell death. Full article
Figures

Figure 1

Open AccessArticle Connexin43 Suppresses Lung Cancer Stem Cells
Cancers 2019, 11(2), 175; https://doi.org/10.3390/cancers11020175
Received: 28 January 2019 / Accepted: 30 January 2019 / Published: 2 February 2019
Cited by 3 | PDF Full-text (3825 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Alterations in gap junctions and their protein components, connexins, have been associated with neoplastic transformation and drug resistance, and more recently have been shown to play important roles in cancer stem cells (CSCs). However, there is less knowledge of connexins and gap junctions [...] Read more.
Alterations in gap junctions and their protein components, connexins, have been associated with neoplastic transformation and drug resistance, and more recently have been shown to play important roles in cancer stem cells (CSCs). However, there is less knowledge of connexins and gap junctions in lung CSCs. To address this, Connexin43 (Cx43), the major human lung epithelial gap junction protein, was expressed ectopically in poorly expressing National Cancer Institute-125 (NCI-H125) metastatic human lung adenocarcinoma cells, and phenotypic characteristics of malignant cells and abundance of CSCs were evaluated. The ectopic expression of Cx43 resulted in the formation of functional gap junctions; a more epithelial morphology; reduced proliferation, invasion, colony formation, tumorsphere formation, pluripotency marker expression, and percentage of aldehyde dehydrogenase (ALDH)-positive cells; and increased cisplatin sensitivity. Similarly, in NCI-H522 (human lung adenocarcinoma) and NCI-H661 (human lung large cell carcinoma) cell lines, which express Cx43 and functional gap junctions endogenously, the Cx43 content was lower in tumorspheres and ALDH-positive cells than in bulk cells. These results demonstrate that Cx43 can reverse several neoplastic characteristics and reduce the abundance of human lung CSCs. Full article
Figures

Figure 1

Open AccessArticle Exploring Differential Connexin Expression across Melanocytic Tumor Progression Involving the Tumor Microenvironment
Cancers 2019, 11(2), 165; https://doi.org/10.3390/cancers11020165
Received: 31 December 2018 / Revised: 25 January 2019 / Accepted: 30 January 2019 / Published: 1 February 2019
PDF Full-text (8808 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The incidence of malignant melanoma, one of the deadliest cancers, continues to increase. Here we tested connexin (Cx) expression in primary melanocytes, melanoma cell lines and in a common nevus, dysplastic nevus, and thin, thick, and metastatic melanoma tumor progression series involving the [...] Read more.
The incidence of malignant melanoma, one of the deadliest cancers, continues to increase. Here we tested connexin (Cx) expression in primary melanocytes, melanoma cell lines and in a common nevus, dysplastic nevus, and thin, thick, and metastatic melanoma tumor progression series involving the tumor microenvironment by utilizing in silico analysis, qRT-PCR, immunocyto-/histochemistry and dye transfer tests. Primary melanocytes expressed GJA1/Cx43, GJA3/Cx46 and low levels of GJB2/Cx26 and GJC3/Cx30.2 transcripts. In silico data revealed downregulation of GJA1/Cx43 and GJB2/Cx26 mRNA, in addition to upregulated GJB1/Cx32, during melanoma progression. In three melanoma cell lines, we also showed the loss of GJA1/Cx43 and the differential expression of GJB1/Cx32, GJB2/Cx26, GJA3/Cx46 and GJC3/Cx30.2. The dominantly paranuclear localization of connexin proteins explained the ~10–90 times less melanoma cell coupling compared to melanocytes. In melanocytic tumor tissues, we confirmed the loss of Cx43 protein, fall of cell membrane and elevated paranuclear Cx32 with moderately increased cytoplasmic Cx26 and paranuclear Cx30.2 positivity during tumor progression. Furthermore, we found Cx43, Cx26 and Cx30 proteins upregulated in the melanoma adjacent epidermis, and Cx43 in the tumor flanking vessels. Therefore, differential connexin expression is involved in melanocytic tumor progression where varying connexin isotypes and levels reflect tumor heterogeneity-related bidirectional adaptive interactions with the microenvironment. Full article
Figures

Figure 1

Open AccessArticle Gap Junction Intercellular Communication Positively Regulates Cisplatin Toxicity by Inducing DNA Damage through Bystander Signaling
Cancers 2018, 10(10), 368; https://doi.org/10.3390/cancers10100368
Received: 17 September 2018 / Revised: 27 September 2018 / Accepted: 28 September 2018 / Published: 2 October 2018
Cited by 3 | PDF Full-text (3129 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The radiation-induced bystander effect (RIBE) can increase cellular toxicity in a gap junction dependent manner in unirradiated bystander cells. Recent reports have suggested that cisplatin toxicity can also be mediated by functional gap junction intercellular communication (GJIC). In this study using lung and [...] Read more.
The radiation-induced bystander effect (RIBE) can increase cellular toxicity in a gap junction dependent manner in unirradiated bystander cells. Recent reports have suggested that cisplatin toxicity can also be mediated by functional gap junction intercellular communication (GJIC). In this study using lung and ovarian cancer cell lines, we showed that cisplatin cytotoxicity is mediated by cellular density. This effect is ablated when GJA1 or Connexin 43 (Cx43) is targeted, a gap junction gene and protein, respectively, leading to cisplatin resistance but only at high or gap junction forming density. We also observed that the cisplatin-mediated bystander effect was elicited as DNA Double Strand Breaks (DSBs) with positive H2AX Ser139 phosphorylation (γH2AX) formation, an indicator of DNA DSBs. These DSBs are not observed when gap junction formation is prevented. We next showed that cisplatin is not the “death” signal traversing the gap junctions by utilizing the cisplatin-GG intrastrand adduct specific antibody. Finally, we also showed that cells deficient in the structure-specific DNA endonuclease ERCC1-ERCC4 (ERCC1-XPF), an important mediator of cisplatin resistance, further sensitized when treated with cisplatin in the presence of gap junction forming density. Taken together, these results demonstrate the positive effect of GJIC on increasing cisplatin cytotoxicity. Full article
Figures

Figure 1

Open AccessArticle Fenofibrate Interferes with the Diapedesis of Lung Adenocarcinoma Cells through the Interference with Cx43/EGF-Dependent Intercellular Signaling
Cancers 2018, 10(10), 363; https://doi.org/10.3390/cancers10100363
Received: 30 August 2018 / Revised: 26 September 2018 / Accepted: 27 September 2018 / Published: 28 September 2018
Cited by 1 | PDF Full-text (2863 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Extravasation of circulating cancer cells is regulated by the intercellular/intracellular signaling pathways that locally impair the endothelial barrier function. Co-cultures of human umbilical vein endothelial cells (HUVECs) with lung adenocarcinoma A549 cells enabled us to identify these pathways and to quantify the effect [...] Read more.
Extravasation of circulating cancer cells is regulated by the intercellular/intracellular signaling pathways that locally impair the endothelial barrier function. Co-cultures of human umbilical vein endothelial cells (HUVECs) with lung adenocarcinoma A549 cells enabled us to identify these pathways and to quantify the effect of fenofibrate (FF) on their activity. A549 cells induced the disruption and local activation of endothelial continuum. These events were accompanied by epidermal growth factor (EGF) up-regulation in endothelial cells. Impaired A549 diapedesis and HUVEC activation were seen upon the chemical inhibition of connexin(Cx)43 functions, EGF/ERK1/2-dependent signaling, and RhoA/Rac1 activity. A total of 25 μM FF exerted corresponding effects on Cx43-mediated gap junctional coupling, EGF production, and ERK1/2 activation in HUVEC/A549 co-cultures. It also directly augmented endothelial barrier function via the interference with focal adhesion kinase (FAK)/RhoA/Rac1-regulated endothelial cell adhesion/contractility/motility and prompted the selective transmigration of epithelioid A549 cells. N-acetyl-L-cysteine abrogated FF effects on HUVEC activation, suggesting the involvement of PPARα-independent mechanism(s) in its action. Our data identify a novel Cx43/EGF/ERK1/2/FAK/RhoA/Rac1-dependent signaling axis, which determines the efficiency of lung cancer cell diapedesis. FF interferes with its activity and reduces the susceptibility of endothelial cells to A549 stimuli. These findings provide the rationale for the implementation of FF in the therapy of malignant lung cancers. Full article
Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells
Cancers 2019, 11(3), 288; https://doi.org/10.3390/cancers11030288
Received: 5 February 2019 / Revised: 22 February 2019 / Accepted: 25 February 2019 / Published: 1 March 2019
PDF Full-text (3180 KB) | HTML Full-text | XML Full-text
Abstract
Gap junction proteins are expressed in cancer stem cells and non-stem cancer cells of many tumors. As the morphology and assembly of gap junction channels are crucial for their function in intercellular communication, one focus of our review is to outline the data [...] Read more.
Gap junction proteins are expressed in cancer stem cells and non-stem cancer cells of many tumors. As the morphology and assembly of gap junction channels are crucial for their function in intercellular communication, one focus of our review is to outline the data on gap junction plaque morphology available for cancer cells. Electron microscopic studies and freeze-fracture analyses on gap junction ultrastructure in cancer are summarized. As the presence of gap junctions is relevant in solid tumors, we exemplarily outline their role in glioblastomas and in breast cancer. These were also shown to contain cancer stem cells, which are an essential cause of tumor onset and of tumor transmission into metastases. For these processes, gap junctional communication was shown to be important and thus we summarize, how the expression of gap junction proteins and the resulting communication between cancer stem cells and their surrounding cells contributes to the dissemination of cancer stem cells via blood or lymphatic vessels. Based on their importance for tumors and metastases, future cancer-specific therapies are expected to address gap junction proteins. In turn, gap junctions also seem to contribute to the unattainability of cancer stem cells by certain treatments and might thus contribute to therapeutic resistance. Full article
Figures

Figure 1

Open AccessReview The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis
Cancers 2019, 11(2), 237; https://doi.org/10.3390/cancers11020237
Received: 25 December 2018 / Revised: 8 February 2019 / Accepted: 13 February 2019 / Published: 18 February 2019
PDF Full-text (1202 KB) | HTML Full-text | XML Full-text
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, [...] Read more.
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis. Full article
Figures

Figure 1

Open AccessReview PI3k and Stat3: Oncogenes that are Required for Gap Junctional, Intercellular Communication
Cancers 2019, 11(2), 167; https://doi.org/10.3390/cancers11020167
Received: 21 December 2018 / Revised: 21 January 2019 / Accepted: 26 January 2019 / Published: 1 February 2019
PDF Full-text (2440 KB) | HTML Full-text | XML Full-text
Abstract
Gap junctional, intercellular communication (GJIC) is interrupted in cells transformed by oncogenes such as activated Src. The Src effector, Ras, is required for this effect, so that Ras inhibition restores GJIC in Src-transformed cells. Interestingly, the inhibition of the Src effector phosphatidyl-inositol-3 kinase [...] Read more.
Gap junctional, intercellular communication (GJIC) is interrupted in cells transformed by oncogenes such as activated Src. The Src effector, Ras, is required for this effect, so that Ras inhibition restores GJIC in Src-transformed cells. Interestingly, the inhibition of the Src effector phosphatidyl-inositol-3 kinase (PI3k) or Signal Transducer and Activator of Transcription-3 (Stat3) pathways does not restore GJIC. In the contrary, inhibition of PI3k or Stat3 in non-transformed rodent fibroblasts or epithelial cells or certain human lung carcinoma lines with extensive GJIC inhibits communication, while mutational activation of PI3k or Stat3 increases GJIC. Therefore, it appears that oncogenes such as activated Src have a dual role upon GJIC; acting as inhibitors of communication through the Ras pathway, and as activators through activation of PI3k or Stat3. In the presence of high Src activity the inhibitory functions prevail so that the net effect is gap junction closure. PI3k and Stat3 constitute potent survival signals, so that their inhibition in non-transformed cells triggers apoptosis which, in turn, has been independently demonstrated to suppress GJIC. The interruption of gap junctional communication would confine the apoptotic event to single cells and this might be essential for the maintenance of tissue integrity. We hypothesize that the GJIC activation by PI3k or Stat3 may be linked to their survival function. Full article
Figures

Figure 1

Open AccessReview Connexins and Integrins in Exosomes
Cancers 2019, 11(1), 106; https://doi.org/10.3390/cancers11010106
Received: 17 December 2018 / Revised: 10 January 2019 / Accepted: 15 January 2019 / Published: 17 January 2019
Cited by 3 | PDF Full-text (1387 KB) | HTML Full-text | XML Full-text
Abstract
Connexins and integrins, the two structurally and functionally distinct families of transmembrane proteins, have been shown to be inter-connected by various modes of cross-talk in cells, such as direct physical coupling via lateral contact, indirect physical coupling via actin and actin-binding proteins, and [...] Read more.
Connexins and integrins, the two structurally and functionally distinct families of transmembrane proteins, have been shown to be inter-connected by various modes of cross-talk in cells, such as direct physical coupling via lateral contact, indirect physical coupling via actin and actin-binding proteins, and functional coupling via signaling cascades. This connexin-integrin cross-talk exemplifies a biologically important collaboration between channels and adhesion receptors in cells. Exosomes are biological lipid-bilayer nanoparticles secreted from virtually all cells via endosomal pathways into the extracellular space, thereby mediating intercellular communications across a broad range of health and diseases, including cancer progression and metastasis, infection and inflammation, and metabolic deregulation. Connexins and integrins are embedded in the exosomal membranes and have emerged as critical regulators of intercellular communication. This concise review article will explain and discuss recent progress in better understanding the roles of connexins, integrins, and their cross-talk in cells and exosomes. Full article
Figures

Figure 1

Other

Jump to: Research, Review

Open AccessPerspective A Barter Economy in Tumors: Exchanging Metabolites through Gap Junctions
Cancers 2019, 11(1), 117; https://doi.org/10.3390/cancers11010117
Received: 30 December 2018 / Revised: 16 January 2019 / Accepted: 18 January 2019 / Published: 20 January 2019
Cited by 1 | PDF Full-text (2385 KB) | HTML Full-text | XML Full-text
Abstract
To produce physiological functions, many tissues require their cells to be connected by gap junctions. Such diffusive coupling is important in establishing a cytoplasmic syncytium through which cells can exchange signals, substrates and metabolites. Often the benefits of connectivity become apparent solely at [...] Read more.
To produce physiological functions, many tissues require their cells to be connected by gap junctions. Such diffusive coupling is important in establishing a cytoplasmic syncytium through which cells can exchange signals, substrates and metabolites. Often the benefits of connectivity become apparent solely at the multicellular level, leading to the notion that cells work for a common good rather than exclusively in their self-interest. In some tumors, gap junctional connectivity between cancer cells is reduced or absent, but there are notable cases where it persists or re-emerges in late-stage disease. Diffusive coupling will blur certain phenotypic differences between cells, which may seem to go against the establishment of population heterogeneity, a central pillar of cancer that stems from genetic instability. Here, building on our previous measurements of gap junctional coupling between cancer cells, we use a computational model to simulate the role of connexin-assembled channels in exchanging lactate and bicarbonate ions down their diffusion gradients. Based on the results of these simulations, we propose that an overriding benefit of gap junctional connectivity may relate to lactate/bicarbonate exchange, which would support an elevated metabolic rate in hypoxic tumors. In this example of barter, hypoxic cancer cells provide normoxic neighbors with lactate for mitochondrial oxidation; in exchange, bicarbonate ions, which are more plentiful in normoxic cells, are supplied to hypoxic neighbors to neutralize the H+ ions co-produced glycolytically. Both cells benefit, and so does the tumor. Full article
Figures

Figure 1

Open AccessConcept Paper Cancer Prevention and Therapy of Two Types of Gap Junctional Intercellular Communication–Deficient “Cancer Stem Cell”
Received: 27 November 2018 / Revised: 23 December 2018 / Accepted: 8 January 2019 / Published: 14 January 2019
Cited by 1 | PDF Full-text (847 KB) | HTML Full-text | XML Full-text
Abstract
Early observations showed a lack of growth control and terminal differentiation with a lack of gap junctional intercellular communication (GJIC). Subsequent observations showed that epigenetic tumor promoters and activated oncogenes, which block gap junction function, provide insights into the multi-stage, multi-mechanism carcinogenic process. [...] Read more.
Early observations showed a lack of growth control and terminal differentiation with a lack of gap junctional intercellular communication (GJIC). Subsequent observations showed that epigenetic tumor promoters and activated oncogenes, which block gap junction function, provide insights into the multi-stage, multi-mechanism carcinogenic process. With the isolation of embryonic induced pluri-potent stem cells and organ-specific adult stem cells, gap junctions were linked to early development. While tumors and tumor cell lines are a heterogeneous mixture of “cancer stem cells” and “cancer non-stem cells”, the cancer stem cells seem to be of two types, namely, they express (a) no connexin genes or (b) connexin genes, but do not have functional GJIC. These observations suggest that these “cancer stem cells” originate from normal adult stem cells or from the de-differentiation or re-programming of somatic differentiated cells. This “Concept Paper” provides a hypothesis that “cancer stem cells” either originate from (a) organ-specific adult stem cells before the expression of the connexin genes or (b) organ-specific adult stem cells that just express gap junction genes but that the connexin proteins are rendered dysfunctional by activated oncogenes. Therefore, cancer prevention and therapeutic strategies must account for these two different types of “cancer stem cell”. Full article
Figures

Figure 1

Cancers EISSN 2072-6694 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top