Brain Stimulation Treatments for Memory Disorders

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Systems Neuroscience".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1233

Special Issue Editors


E-Mail Website
Guest Editor
Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
Interests: rTMS; cognition; rodent; human; plasticity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Medicine, Stanford University, Stanford, CA, USA
Interests: brain stimulation; cognitive neuroscience; language

Special Issue Information

Dear Colleagues,

Brain stimulation has emerged as a promising treatment for many brain and mental health conditions. While it has received approval for the treatment of some diseases, the efficacy of stimulation on memory disorders such as dementia remains unknown. The dorsolateral prefrontal cortex (DLPFC) is a primary target in brain research, with some favorable results having been found, but alternative targets and frequencies are proving to have strong potential for reducing cognitive loss. Comprehensive clinical and basic research is needed to fully explore the optimal parameters and biochemical pathways induced by brain stimulation. This Special Issue focuses on various studies related to any form of brain stimulation to boost memory with the goal of gaining insight into this potential treatment modality.

Dr. Windy McNerney
Dr. John Philip Coetzee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • DBS
  • tACS
  • tDCS
  • TUS
  • memory loss
  • plasticity
  • cognition
  • biochemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3432 KiB  
Article
rTMS Modulation of Behavioral and Biological Measures in 3xTg-AD Mice
by Eric P. Kraybill, Fatemeh S. Mojabi, Alesha M. Heath, Cierra R. Spikes, Charlotte Beard and M. Windy McNerney
Brain Sci. 2024, 14(12), 1186; https://doi.org/10.3390/brainsci14121186 - 26 Nov 2024
Viewed by 876
Abstract
Background/Objectives: The biological basis for behavioral manifestations of Alzheimer’s disease remains unclear. Emotional and behavioral alterations of Alzheimer’s disease can result in substantial caregiver burden and lack effective management. This study expands upon previous work investigating behavioral alterations in mice with Alzheimer’s disease [...] Read more.
Background/Objectives: The biological basis for behavioral manifestations of Alzheimer’s disease remains unclear. Emotional and behavioral alterations of Alzheimer’s disease can result in substantial caregiver burden and lack effective management. This study expands upon previous work investigating behavioral alterations in mice with Alzheimer’s disease and a potential treatment of increasing brain-derived neurotrophic factor (BDNF) using repetitive transcranial magnetic stimulation (rTMS). Methods: A total of 47 3xTg-AD (Alzheimer’s) and 53 B6 (wildtype) mice were administered ANA12 (an antagonist of TrkB receptor) or Vehicle (saline) and then rTMS or Sham treatment daily. After 14 days of treatments and injections, mouse behavior was assessed under various behavioral cognitive tests. Mice were then perfused, and brain samples were processed for histology and protein assays. Brain homogenates were analyzed for BDNF and its downstream signaling molecules. Results: Open field testing demonstrated that 3xTg-AD mice spent more time in the center than B6 mice. 3xTg-AD-Sham mice injected with ANA12 were the only group to travel significantly less distance than B6-ANA12-Sham or B6-Vehicle-Sham mice (p < 0.05), while 3xTg-AD-rTMS mice (irrespective of injection) were not significantly different from B6 mice. 3xTg-AD mice had significantly greater measured levels of BDNF and TrkB than the wild-type mice. Conclusions: Treatment of Alzheimer’s disease using rTMS positively affects elements of hypoactivity, but not all behavioral abnormalities. rTMS shifted 3xTg-AD open field behavioral test measures, generating significant differences between untreated 3xTg-AD and B6 genotypes. Despite its benefit, further investigation of rTMS as a treatment for Alzheimer’s disease as well as its biological underpinnings are needed. Full article
(This article belongs to the Special Issue Brain Stimulation Treatments for Memory Disorders)
Show Figures

Figure 1

Back to TopTop