Molecular and Neuroimaging Biomarkers in Alzheimer’s Disease and Frontotemporal Lobar Degeneration

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Neurodegenerative Diseases".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1513

Special Issue Editor


E-Mail
Guest Editor
Department of Neurology, Mayo Clinic, Rochester, MN, USA
Interests: molecular and neuroimaging biomarkers across neurodegenerative diseases

Special Issue Information

Dear Colleagues,

As life expectancy increases, the number of people with dementia is projected to grow exponentially. Nonetheless, new biotechnologies have been focused on improving detection and treatment exposure at early stages. This Special Issue aims to provide the reader with an overview of novel imaging and molecular techniques that could be proven key in investigating this disease. We welcome authors from any related neuroscience or medical fields to contribute original research articles demonstrating novel neuroimaging methods and/or new molecular biomarkers related to the dementia spectrum study. We welcome contributions on subjects related to (but not limited to) basic, translational, or clinical research applying novel biomarkers in the context of this or related diseases. Manuscripts can be submitted through any related sections of this journal.

Dr. Rodolfo Gabriel Gatto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neuroimaging
  • biomarkers
  • genetic and molecular biology
  • connectomics
  • neuropathology
  • neuropsychological measures
  • dementia
  • preclinical models
  • alzheimer’s disease
  • frontotemporal dementia

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

41 pages, 2878 KiB  
Review
Modeling Alzheimer’s Disease: A Review of Gene-Modified and Induced Animal Models, Complex Cell Culture Models, and Computational Modeling
by Anna M. Timofeeva, Kseniya S. Aulova and Georgy A. Nevinsky
Brain Sci. 2025, 15(5), 486; https://doi.org/10.3390/brainsci15050486 - 5 May 2025
Viewed by 968
Abstract
Alzheimer’s disease, a complex neurodegenerative disease, is characterized by the pathological aggregation of insoluble amyloid β and hyperphosphorylated tau. Multiple models of this disease have been employed to investigate the etiology, pathogenesis, and multifactorial aspects of Alzheimer’s disease and facilitate therapeutic development. Mammals, [...] Read more.
Alzheimer’s disease, a complex neurodegenerative disease, is characterized by the pathological aggregation of insoluble amyloid β and hyperphosphorylated tau. Multiple models of this disease have been employed to investigate the etiology, pathogenesis, and multifactorial aspects of Alzheimer’s disease and facilitate therapeutic development. Mammals, especially mice, are the most common models for studying the pathogenesis of this disease in vivo. To date, the scientific literature has documented more than 280 mouse models exhibiting diverse aspects of Alzheimer’s disease pathogenesis. Other mammalian species, including rats, pigs, and primates, have also been utilized as models. Selected aspects of Alzheimer’s disease have also been modeled in simpler model organisms, such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. It is possible to model Alzheimer’s disease not only by creating genetically modified animal lines but also by inducing symptoms of this neurodegenerative disease. This review discusses the main methods of creating induced models, with a particular focus on modeling Alzheimer’s disease on cell cultures. Induced pluripotent stem cell (iPSC) technology has facilitated novel investigations into the mechanistic underpinnings of diverse diseases, including Alzheimer’s. Progress in culturing brain tissue allows for more personalized studies on how drugs affect the brain. Recent years have witnessed substantial advancements in intricate cellular system development, including spheroids, three-dimensional scaffolds, and microfluidic cultures. Microfluidic technologies have emerged as cutting-edge tools for studying intercellular interactions, the tissue microenvironment, and the role of the blood–brain barrier (BBB). Modern biology is experiencing a significant paradigm shift towards utilizing big data and omics technologies. Computational modeling represents a powerful methodology for researching a wide array of human diseases, including Alzheimer’s. Bioinformatic methodologies facilitate the analysis of extensive datasets generated via high-throughput experimentation. It is imperative to underscore the significance of integrating diverse modeling techniques in elucidating pathogenic mechanisms in their entirety. Full article
Show Figures

Figure 1

Back to TopTop