Advances in Flexible Bioelectronics and Intelligent Biosensing Systems

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Wearable Biosensors".

Deadline for manuscript submissions: closed (20 April 2025) | Viewed by 10702

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
Interests: flexible electronic materials; microsensor devices

Special Issue Information

Dear Colleagues,

Flexible bio-electronics and intelligent biosensing systems are cutting-edge technologies that enable efficient and precise monitoring of various biophysiological signals. The integration of bio-electronics and biosensors has significantly promoted long-term continuous health monitoring, early disease diagnosis, and lifestyle and disease management. Nonetheless, the demand for high-quality, flexible bio-electronics and intelligent biosensing systems that are robust, conformable, easy to use, rich in clinical information, and capable of effective mass production is ever increasing. Therefore, this Special Issue, "Advances in Flexible Bio-electronics and Intelligent Biosensing Systems", focuses on recent advances in the development of bio-interfaced flexible chemical and physical sensors and intelligent sensing systems. We invite submissions that help to advance the field of flexible bio-electronics and biosensing technology and its applications for biomarker detection, disease diagnosis, and other biomedical applications.

Dr. Shuwen Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-electronics
  • biosensors
  • flexible sensors
  • flexible electronics
  • wearable sensors
  • healthcare electronics
  • biomedical electronics
  • biochemical sensors
  • bio-interfaced physical sensors
  • artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

23 pages, 2928 KiB  
Article
Intra- and Inter-Regional Complexity in Multi-Channel Awake EEG Through Multivariate Multiscale Dispersion Entropy for Assessing Sleep Quality and Aging
by Ahmad Zandbagleh, Saeid Sanei, Lucía Penalba-Sánchez, Pedro Miguel Rodrigues, Mark Crook-Rumsey and Hamed Azami
Biosensors 2025, 15(4), 240; https://doi.org/10.3390/bios15040240 - 9 Apr 2025
Viewed by 468
Abstract
Aging and poor sleep quality are associated with altered brain dynamics, yet current electroencephalography (EEG) analyses often overlook regional complexity. This study addresses this gap by introducing a novel integration of intra- and inter-regional complexity analysis using multivariate multiscale dispersion entropy (mvMDE) from [...] Read more.
Aging and poor sleep quality are associated with altered brain dynamics, yet current electroencephalography (EEG) analyses often overlook regional complexity. This study addresses this gap by introducing a novel integration of intra- and inter-regional complexity analysis using multivariate multiscale dispersion entropy (mvMDE) from awake resting-state EEG for the first time. Moreover, assessing both intra- and inter-regional complexity provides a comprehensive perspective on the dynamic interplay between localized neural activity and its coordination across brain regions, which is essential for understanding the neural substrates of aging and sleep quality. Data from 58 participants—24 young adults (mean age = 24.7 ± 3.4) and 34 older adults (mean age = 72.9 ± 4.2)—were analyzed, with each age group further divided based on Pittsburgh Sleep Quality Index (PSQI) scores. To capture inter-regional complexity, mvMDE was applied to the most informative group of sensors, with one sensor selected from each brain region using four methods: highest average correlation, highest entropy, highest mutual information, and highest principal component loading. This targeted approach reduced computational cost and enhanced the effect sizes (ESs), particularly at large scale factors (e.g., 25) linked to delta-band activity, with the PCA-based method achieving the highest ESs (1.043 for sleep quality in older adults). Overall, we expect that both inter- and intra-regional complexity will play a pivotal role in elucidating neural mechanisms as captured by various physiological data modalities—such as EEG, magnetoencephalography, and magnetic resonance imaging—thereby offering promising insights for a range of biomedical applications. Full article
Show Figures

Figure 1

18 pages, 4036 KiB  
Article
High-Accuracy Intermittent Strabismus Screening via Wearable Eye-Tracking and AI-Enhanced Ocular Feature Analysis
by Zihe Zhao, Hongbei Meng, Shangru Li, Shengbo Wang, Jiaqi Wang and Shuo Gao
Biosensors 2025, 15(2), 110; https://doi.org/10.3390/bios15020110 - 14 Feb 2025
Viewed by 872
Abstract
An effective and highly accurate strabismus screening method is expected to identify potential patients and provide timely treatment to prevent further deterioration, such as amblyopia and even permanent vision loss. To satisfy this need, this work showcases a novel strabismus screening method based [...] Read more.
An effective and highly accurate strabismus screening method is expected to identify potential patients and provide timely treatment to prevent further deterioration, such as amblyopia and even permanent vision loss. To satisfy this need, this work showcases a novel strabismus screening method based on a wearable eye-tracking device combined with an artificial intelligence (AI) algorithm. To identify the minor and occasional inconsistencies in strabismus patients during the binocular coordination process, which are usually seen in early-stage patients and rarely recognized in current studies, the system captures temporally and spatially continuous high-definition infrared images of the eye during wide-angle continuous motion, and is effective in inducing intermittent strabismus. Based on the collected eye motion information, 16 features of the oculomotor process with strong physiological interpretations, which help biomedical staff understand and evaluate results generated later, are calculated through the introduction of pupil-canthus vectors. These features can be normalized, and reflect individual differences. After these features are processed by the random forest (RF) algorithm, this method experimentally yields 97.1% accuracy in strabismus detection in 70 people under diverse indoor testing conditions, validating the high accuracy and robustness of the method, and implying that the method has strong potential to support widespread and highly accurate strabismus screening. Full article
Show Figures

Figure 1

21 pages, 2000 KiB  
Article
Detection of Cognitive Performance Deterioration Due to Cold-Air Exposure in Females Using Wearable Electrodermal Activity and Electrocardiogram
by Youngsun Kong, Riley McNaboe, Md Billal Hossain, Hugo F. Posada-Quintero, Krystina Diaz, Ki H. Chon and Jeffrey Bolkhovsky
Biosensors 2025, 15(2), 78; https://doi.org/10.3390/bios15020078 - 29 Jan 2025
Viewed by 1308
Abstract
Prolonged exposure to cold air can impair reaction time and cognitive function, which can lead to serious consequences. One mitigation strategy is to develop models that can predict cognitive performance by tracking physiological metrics associated with cold stress. As females are evidenced to [...] Read more.
Prolonged exposure to cold air can impair reaction time and cognitive function, which can lead to serious consequences. One mitigation strategy is to develop models that can predict cognitive performance by tracking physiological metrics associated with cold stress. As females are evidenced to be more sensitive to cold exposure, this study investigated the relationship between physiological metrics and cognitive performance deterioration of female subjects under cold stress. Wearable electrodermal activity (EDA) and electrocardiogram (ECG) were collected from nineteen females who underwent five sessions of a cognitive task battery—assessing reaction time, memory, and attention—in a cold (10 °C) environment. Machine learning classifiers showed higher cognitive performance classification accuracies with heart rate variability (HRV) features than with EDA features. Particularly in detecting performance deterioration in a task associated with assessing short-term memory, our support vector machine classifier with HRV features showed an 82.4% accuracy, with a sensitivity of 84.2% and a specificity of 80.6%, whereas a 55.4% accuracy with a sensitivity of 44.7% and a specificity of 66.7% was obtained with EDA features. Our results demonstrate the feasibility of detecting performance deterioration from females who underwent cold exposure using wearable EDA and ECG, allowing for preventive measures to reduce risk in cold environments, especially for female military personnel. Full article
Show Figures

Figure 1

11 pages, 3940 KiB  
Article
Utilizing Multiple Triboelectric Nanogenerator Sensors and Signal Processing Technology for Monitoring Periodic Leg Movements of Sleep
by Zongyi Jiang, Yunzhong Wang, Damian Tohl, Liming Fang and Youhong Tang
Biosensors 2024, 14(11), 532; https://doi.org/10.3390/bios14110532 - 4 Nov 2024
Viewed by 1266
Abstract
High-quality sleep is essential for both physiological and cognitive functions. However, periodic leg movements of sleep (PLMS), an involuntary phenomenon during sleep, affects millions of people worldwide, contributing to sleep fragmentation and functional impairments. The accurate monitoring of PLMS is important for identifying [...] Read more.
High-quality sleep is essential for both physiological and cognitive functions. However, periodic leg movements of sleep (PLMS), an involuntary phenomenon during sleep, affects millions of people worldwide, contributing to sleep fragmentation and functional impairments. The accurate monitoring of PLMS is important for identifying and addressing these issues. Traditional methods, such as polysomnography (PSG), which monitor the bare tibialis muscle movements in clinical environments, may not adequately reflect the natural sleep patterns at home. They are costly and unsuitable for long-term studies. In recent years, there has been growing interest in using flexible sensors for sleep monitoring. Previous studies have applied triboelectric nanogenerators (TENGs) as flexible sensors to detect muscle movements during sleep. However, distinguishing true PLMS from false signals caused by external factors, such as blankets, remains a challenge. This study proposes a method using three TENG sensors placed on the dorsum, ankle, and tibialis, respectively, along with signal processing techniques to enhance the accuracy of PLMS detection. This study provides a cost-effective, comfortable method for PLMS monitoring, with the potential for widespread use in home-based sleep studies and long-term care in the future. Full article
Show Figures

Figure 1

9 pages, 1043 KiB  
Article
Construct Validity of a Wearable Inertial Measurement Unit (IMU) in Measuring Postural Sway and the Effect of Visual Deprivation in Healthy Older Adults
by Luca Ferrari, Gianluca Bochicchio, Alberto Bottari, Alessandra Scarton, Francesco Lucertini and Silvia Pogliaghi
Biosensors 2024, 14(11), 529; https://doi.org/10.3390/bios14110529 - 1 Nov 2024
Cited by 1 | Viewed by 1303
Abstract
Inertial Motor sensors (IMUs) are valid instruments for measuring postural sway but their ability to detect changes derived from visual deprivation in healthy older adults requires further investigations. We examined the validity and relationship of IMU sensor-derived postural sway measures compared to force [...] Read more.
Inertial Motor sensors (IMUs) are valid instruments for measuring postural sway but their ability to detect changes derived from visual deprivation in healthy older adults requires further investigations. We examined the validity and relationship of IMU sensor-derived postural sway measures compared to force plates for different eye conditions in healthy older adults (32 females, 33 males). We compared the relationship of the center of mass and center of pressure (CoM and CoP)-derived total length, root means square (RMS) distance, mean velocity, and 95% confidence interval ellipse area (95% CI ellipse area). In addition, we examined the relationship of the IMU sensor in discriminating between open- (EO) and closed-eye (EC) conditions compared to the force plate. A significant effect of the instruments and eye conditions was found for almost all the variables. Overall, EO and EC variables within (force plate r, from 0.38 to 0.78; IMU sensor r, from 0.36 to 0.69) as well as between (r from 0.50 to 0.88) instruments were moderately to strongly correlated. The EC:EO ratios of RMS distance and 95% CI ellipse area were not different between instruments, while there were significant differences between total length (p = 0.973) and mean velocity (p = 0.703). The ratios’ correlation coefficients between instruments ranged from moderate (r = 0.65) to strong (r = 0.87). The IMU sensor offers an affordable, valid alternative to a force plate for objective, postural sway assessment. Full article
Show Figures

Figure 1

13 pages, 4393 KiB  
Article
A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition
by Jun Guo, Xuanqi Wang, Ruiyu Bai, Zimo Zhang, Huazhen Chen, Kai Xue, Chuang Ma, Dawei Zang, Erwei Yin, Kunpeng Gao and Bowen Ji
Biosensors 2024, 14(9), 432; https://doi.org/10.3390/bios14090432 - 6 Sep 2024
Cited by 1 | Viewed by 1748
Abstract
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through [...] Read more.
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through hair due to their flat contact surface. Claw electrodes can contact skin through hair on the head and body, but the internal claw structure is relatively hard and causes discomfort after being worn for a few hours. Here, we report a conductive Velcro electrode (CVE) with an elastic hook hair structure, which can collect biopotential through body hair. The elastic hooks greatly reduce discomfort after long-time wearing and can even be worn all day. The CVE electrode is fabricated by one-step immersion in conductive silver paste based on the cost-effective commercial Velcro, forming a uniform and durable conductive coating on a cluster of hook microstructures. The electrode shows excellent properties, including low impedance (15.88 kΩ @ 10 Hz), high signal-to-noise ratio (16.0 dB), strong water resistance, and mechanical resistance. After washing in laundry detergent, the impedance of CVE is still 16% lower than the commercial AgCl electrodes. To verify the mechanical strength and recovery capability, we conducted cyclic compression experiments. The results show that the displacement change of the electrode hook hair after 50 compression cycles was still less than 1%. This electrode provides a universal acquisition scheme, including effective acquisition of different parts of the body with or without hair. Finally, the gesture recognition from electromyography (EMG) by the CVE electrode was applied with accuracy above 90%. The CVE proposed in this study has great potential and promise in various human–machine interface (HMI) applications that employ surface biopotential signals on the body or head with hair. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

46 pages, 10314 KiB  
Review
Recent Advances in Enzymatic Biofuel Cells to Power Up Wearable and Implantable Biosensors
by Zina Fredj, Guoguang Rong and Mohamad Sawan
Biosensors 2025, 15(4), 218; https://doi.org/10.3390/bios15040218 - 28 Mar 2025
Viewed by 437
Abstract
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation [...] Read more.
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation biosensing applications. Despite their promise, their practical deployment is limited by challenges such as low power density, restricted operational lifespan, and miniaturization complexities. This review provides an in-depth exploration of the evolving landscape of EBFC technology, beginning with fundamental principles and the latest developments in electron transfer mechanisms. A critical assessment of enzyme immobilization techniques, including physical adsorption, covalent binding, entrapment, and cross-linking, underscores the importance of optimizing enzyme stability and catalytic activity for enhanced bioelectrode performance. Additionally, we examine advanced bioelectrode materials, focusing on the role of nanostructures such as carbon-based nanomaterials, noble metals, conducting polymers, and metal–organic frameworks in improving electron transfer and boosting biosensor efficiency. Also, this review includes case studies of EBFCs in wearable self-powered biosensors, with particular attention to the real-time monitoring of neurotransmitters, glucose, lactate, and ethanol through sweat analysis, as well as their integration into implantable devices for continuous healthcare monitoring. Moreover, a dedicated discussion on challenges and trends highlights key limitations, including durability, power management, and scalability, while presenting innovative approaches to address these barriers. By addressing both technical and biological constraints, EBFCs hold the potential to revolutionize biomedical diagnostics and environmental monitoring, paving the way for highly efficient, autonomous biosensing platforms. Full article
Show Figures

Graphical abstract

20 pages, 6340 KiB  
Review
Soft Wireless Passive Chipless Sensors for Biological Applications: A Review
by Mingguang Zhang, Mengyun Li, Wei Xu, Fan Zhang, Daojin Yao, Xiaoming Wang and Wentao Dong
Biosensors 2025, 15(1), 6; https://doi.org/10.3390/bios15010006 - 26 Dec 2024
Viewed by 1036
Abstract
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose [...] Read more.
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work. Three kinds of soft wireless sensors, soft wireless passive LC-resonant sensors, soft wireless radio frequency (RF) sensors, and soft wireless surface acoustic wave (SAW) sensors, are introduced with their working principles, equitant circuits, and biological applications. Soft wireless passive sensors with integrated LC-resonant units are applied to physical quantity measurements for denoting the mapping relationship between the frequency resonance and the monitored object. Utilizing the electromagnetic field principle, RF sensors enable wireless measurements and data exchange of physical parameters. SAW sensors with piezoelectric substrates are applied to physical parameter monitoring using guided waves in monitoring objects. Soft wireless passive sensors aim to monitor biological health without an external power supply or wired data communication, which would bring increased convenience to the lives of the people who use them. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

12 pages, 1993 KiB  
Perspective
Wearable Sensors and Motion Analysis for Neurological Patient Support
by Peter Dabnichki and Toh Yen Pang
Biosensors 2024, 14(12), 628; https://doi.org/10.3390/bios14120628 - 19 Dec 2024
Viewed by 1334
Abstract
This work discusses the state of the art and challenges in using wearable sensors for the monitoring of neurological patients. The authors share their experience from their participation in numerous projects, ranging from drug trials to rehabilitation intervention assessment, and identify the obstacles [...] Read more.
This work discusses the state of the art and challenges in using wearable sensors for the monitoring of neurological patients. The authors share their experience from their participation in numerous projects, ranging from drug trials to rehabilitation intervention assessment, and identify the obstacles in the way of the integrated adoption of wearable sensors in clinical and rehabilitation practices for neurological patients. Several highly promising developments are outlined and analyzed. It is considered that intelligent textiles are an attractive option, as they offer an esthetic outlook to and positive interaction with their users. Full article
Show Figures

Figure 1

Back to TopTop