Advanced Research in Endocrine Tumor: Molecular Pathology, Biomarker and Target Therapy

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Cancer Biology and Oncology".

Deadline for manuscript submissions: closed (30 April 2022) | Viewed by 24725

Special Issue Editor


E-Mail Website
Guest Editor
Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi 981-8558, Japan
Interests: pathology of endocrine and urological disorders
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent developments in molecular analyzing systems have clarified pathogenesis, novel biomarkers, and prognostic prediction of several types of endocrine tumors, which has resulted in significant revisions in the fourth edition of the World Health Organization’s classification of endocrine tumors. Therefore, it would be very interesting to specifically focus on these novel findings. I invite you to submit an original and review article for this Special Edition. It would be an honor to work and co-publish with you.

Prof. Dr. Yasuhiro Nakamura
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 464 KiB  
Article
Characteristics and Outcomes in Primary Aldosteronism Patients Harboring Glucocorticoid-Remediable Aldosteronism
by Chung-Yi Cheng, Hung-Wei Liao, Kang-Yung Peng, Tso-Hsiao Chen, Yen-Hung Lin, Jeff S. Chueh, Vin-Cent Wu and on behalf of the TAIPAI Study Group
Biomedicines 2021, 9(12), 1816; https://doi.org/10.3390/biomedicines9121816 - 02 Dec 2021
Cited by 4 | Viewed by 1806
Abstract
The clinical characteristics and surgical prognosis of glucocorticoid-remediable aldosteronism (GRA, also known as familial hyperaldosteronism type 1, FH-I) have not been widely studied. Using data from the Taiwan Primary Aldosteronism Investigation (TAIPAI) registry retrospectively, we describe the associated clinical factors for GRA and [...] Read more.
The clinical characteristics and surgical prognosis of glucocorticoid-remediable aldosteronism (GRA, also known as familial hyperaldosteronism type 1, FH-I) have not been widely studied. Using data from the Taiwan Primary Aldosteronism Investigation (TAIPAI) registry retrospectively, we describe the associated clinical factors for GRA and clinical predictors of surgical outcomes among identified GRA patients. We found 79 GRA-positive (51.2 ± 13.8 years; women 39 (49.4%)) and 114 GRA-negative primary aldosteronism (PA) patients matched with age, gender, and body mass index. Lower plasma aldosterone concentrations (PACs) and aldosterone-renin ratios were found among GRA-positive individuals. Multivariable logistic regression demonstrated that a PAC ≤ 40 ng/dL could predict concealed GRA individuals (OR 0.523, p = 0.037). Low serum potassium (OR 0.285, p = 0.008), but not the presence of GRA, was associated with hypertension-remission. Of note, PRA (OR 11.645, p = 0.045) and hypokalemia (OR 0.133, p = 0.048) were associated with hypertension-remission in GRA patients. Unilateral primary aldosteronism patients harboring concomitant GRA were not associated with inferior hypertension-remission after an adrenalectomy. Low serum potassium and high PRA were positively associated with hypertension-remission in GRA patients. Full article
Show Figures

Graphical abstract

16 pages, 4772 KiB  
Article
Novel Mutations Detection with Next-Generation Sequencing and Its Association with Clinical Outcome in Unilateral Primary Aldosteronism
by Che-Hsiung Wu, Kang-Yung Peng, Daw-Yang Hwang, Yen-Hung Lin, Vin-Cent Wu and Jeff S. Chueh
Biomedicines 2021, 9(9), 1167; https://doi.org/10.3390/biomedicines9091167 - 06 Sep 2021
Cited by 8 | Viewed by 1982
Abstract
Somatic mutations have been identified in adrenal tissues of unilateral primary aldosteronism (uPA). The spectrum of somatic mutations in uPAs was investigated using a customized and targeted next-generation sequencing (cNGS) approach. We also assessed whether cNGS or Sanger sequencing-identified mutations have an association [...] Read more.
Somatic mutations have been identified in adrenal tissues of unilateral primary aldosteronism (uPA). The spectrum of somatic mutations in uPAs was investigated using a customized and targeted next-generation sequencing (cNGS) approach. We also assessed whether cNGS or Sanger sequencing-identified mutations have an association with clinical outcomes in uPA. Adrenal tumoral tissues of uPA patients who underwent adrenalectomy were obtained. Conventional somatic mutation hotspots in 240 extracted DNA samples were initially screened using Sanger sequencing. A total of 75 Sanger-negative samples were further investigated by sequencing the entire coding regions of the known aldosterone-driver genes by our cNGS gene panel. Somatic mutations in aldosterone-driver genes were detected in 21 (28%) of these samples (8.8% of all samples), with 9 samples, including mutations in CACNA1D gene (12%), 5 in CACNA1H (6.6%), 3 in ATP2B3 (4%), 2 in CLCN2 (2.6%), 1 in ATP1A1 (1.3%), and 1 in CTNNB1 (1.3%). Via combined cNGS and Sanger sequencing aldosterone-driver gene mutations were detected in altogether 186 of our 240 (77.5%) uPA samples. The complete clinical success rate of patients containing cNGS-identified mutations was higher than those without mutations (odds ratio (OR) = 10.9; p = 0.012). Identification of somatic mutations with cNGS or Sanger sequencing may facilitate the prediction of complete clinical success after adrenalectomy in uPA patients. Full article
Show Figures

Figure 1

14 pages, 5289 KiB  
Article
Pathophysiological and Pharmacological Characteristics of KCNJ5 157-159delITE Somatic Mutation in Aldosterone-Producing Adenomas
by Kang-Yung Peng, Hung-Wei Liao, Jeff S. Chueh, Chien-Yuan Pan, Yen-Hung Lin, Yung-Ming Chen, Peng-Ying Chen, Chun-Lin Huang and Vin-Cent Wu
Biomedicines 2021, 9(8), 1026; https://doi.org/10.3390/biomedicines9081026 - 17 Aug 2021
Cited by 6 | Viewed by 2347
Abstract
Mutated channelopathy could play important roles in the pathogenesis of aldosterone-producing adenoma (APA). In this study, we identified a somatic mutation, KCNJ5 157-159delITE, and reported its immunohistological, pathophysiological and pharmacological characteristics. We conducted patch-clamp experiments on HEK293T cells and experiments on expression of [...] Read more.
Mutated channelopathy could play important roles in the pathogenesis of aldosterone-producing adenoma (APA). In this study, we identified a somatic mutation, KCNJ5 157-159delITE, and reported its immunohistological, pathophysiological and pharmacological characteristics. We conducted patch-clamp experiments on HEK293T cells and experiments on expression of aldosterone synthase (CYP11B2) and aldosterone secretion in HAC15 cells to evaluate electrophysiological and functional properties of this mutated KCNJ5. Immunohistochemistry was conducted to identify expressions of several steroidogenic enzymes. Macrolide antibiotics and a calcium channel blocker were administrated to evaluate the functional attenuation of mutated KCNJ5 channel in transfected HAC15 cells. The interaction between macrolides and KCNJ5 protein was evaluated via molecular docking and molecular dynamics simulation analysis. The immunohistochemistry analysis showed strong CYP11B2 immunoreactivity in the APA harboring KCNJ5 157-159delITE mutation. Whole-cell patch-clamp data revealed that mutated KCNJ5 157-159delITE channel exhibited loss of potassium ion selectivity. The mutant-transfected HAC15 cells increased the expression of CYP11B2 and aldosterone secretion, which was partially suppressed by clarithromycin and nifedipine but not roxithromycin treatment. The docking analysis and molecular dynamics simulation disclosed that roxithromycin had strong interaction with KCNJ5 L168R mutant channel but not with this KCNJ5 157-159delITE mutant channel. We showed comprehensive evaluations of the KCNJ5 157-159delITE mutation which revealed that it disrupted potassium channel selectivity and aggravated autonomous aldosterone production. We further demonstrated that macrolide antibiotics, roxithromycin, could not interfere the aberrant electrophysiological properties and gain-of-function aldosterone secretion induced by KCNJ5 157-159delITE mutation. Full article
Show Figures

Graphical abstract

11 pages, 3613 KiB  
Article
Cellular Senescence in Human Aldosterone-Producing Adrenocortical Cells and Related Disorders
by Jacopo Pieroni, Yuto Yamazaki, Xin Gao, Yuta Tezuka, Hiroko Ogata, Kei Omata, Yoshikiyo Ono, Ryo Morimoto, Yasuhiro Nakamura, Fumitoshi Satoh and Hironobu Sasano
Biomedicines 2021, 9(5), 567; https://doi.org/10.3390/biomedicines9050567 - 18 May 2021
Cited by 5 | Viewed by 2368
Abstract
In situ cortisol excess was previously reported to promote cellular senescence, a cell response to stress, in cortisol-producing adenomas (CPA). The aim of this study was to explore senescence pathways in aldosterone-producing cells and related disorders, and the influence of aldosterone overproduction on [...] Read more.
In situ cortisol excess was previously reported to promote cellular senescence, a cell response to stress, in cortisol-producing adenomas (CPA). The aim of this study was to explore senescence pathways in aldosterone-producing cells and related disorders, and the influence of aldosterone overproduction on in situ senescence. We analyzed 30 surgical cases of aldosterone-producing adenoma (APA), 10 idiopathic hyperaldosteronism (IHA) and 19 normal adrenals (NA). CYP11B2 and senescence markers p16 and p21 were immunolocalized in all those cases above and results were correlated with histological/endocrinological findings. In the three cohorts examined, the zona glomerulosa (ZG) was significantly more senescent than other corticosteroid-producing cells. In addition, the ZG of adjacent non-pathological adrenal glands of APA and IHA had significantly higher p16 expression than adjacent non-pathological zona fasciculata (ZF), reticularis (ZR) and ZG of NA. In addition, laboratory findings of primary aldosteronism (PA) were significantly correlated with p21 status in KCNJ5-mutated tumors. Results of our present study firstly demonstrated that non-aldosterone-producing cells in the ZG were the most senescent compared to other cortical zones and aldosterone-producing cells in PA. Therefore, aldosterone production, whether physiological or pathological, could be maintained by suppression of cell senescence in human adrenal cortex. Full article
Show Figures

Figure 1

12 pages, 1722 KiB  
Article
The ElonginB/C-Cullin5-SOCS-Box-Complex Is a Potential Biomarker for Growth Hormone Disorders
by Wilhelm Gossing, Lars Radke, Henrik Biering, Sven Diederich, Knut Mai and Marcus Frohme
Biomedicines 2021, 9(2), 201; https://doi.org/10.3390/biomedicines9020201 - 17 Feb 2021
Cited by 2 | Viewed by 2097
Abstract
Insulin-like growth factor 1 (IGF-1) is the standard biochemical marker for the diagnosis and treatment control of acromegaly and growth hormone deficiency (GHD). However, its limitations necessitate the screening for new specific and sensitive biomarkers. The elonginB/C-cullin5-SOCS-box-complex (ECS-complex) (an intracellular five-protein complex) is [...] Read more.
Insulin-like growth factor 1 (IGF-1) is the standard biochemical marker for the diagnosis and treatment control of acromegaly and growth hormone deficiency (GHD). However, its limitations necessitate the screening for new specific and sensitive biomarkers. The elonginB/C-cullin5-SOCS-box-complex (ECS-complex) (an intracellular five-protein complex) is stimulated by circulating growth hormone (GH) and regulates GH receptor levels through a negative feedback loop. It mediates the cells’ sensitivity for GH and therefore, represents a potent new biomarker for those diseases. In this study, individual ECS-complex proteins were measured in whole blood samples of patients with acromegaly (n = 32) or GHD (n = 12) via ELISA and compared to controls. Hierarchical clustering of the results revealed that by combining the three ECS-complex proteins suppressor of cytokine signaling 2 (SOCS2), cullin-5 and ring-box protein 2 (Rbx-2), 93% of patient samples could be separated from controls, despite many patients having a normal IGF-1 or not receiving medical treatment. SOCS2 showed the best individual diagnostic performance with an overall accuracy of 0.93, while the combination of the three proteins correctly identified all patients and controls. This resulted in perfect sensitivity and specificity for all patient groups, which demonstrates potential benefits of the ECS-complex proteins as clinical biomarkers for the diagnostics of GH-related diseases and substantiates their important role in GH metabolism. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 3374 KiB  
Review
Molecular Mechanisms of Functional Adrenocortical Adenoma and Carcinoma: Genetic Characterization and Intracellular Signaling Pathway
by Hiroki Shimada, Yuto Yamazaki, Akira Sugawara, Hironobu Sasano and Yasuhiro Nakamura
Biomedicines 2021, 9(8), 892; https://doi.org/10.3390/biomedicines9080892 - 26 Jul 2021
Cited by 7 | Viewed by 2831
Abstract
The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas [...] Read more.
The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor prognosis. Various genetic abnormalities have been reported, which are associated with possible pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In particular, somatic mutations in APAs have been detected in genes encoding membrane proteins, especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics and regulation of intracellular signaling and transcription factors in individual tumors. Full article
Show Figures

Figure 1

13 pages, 853 KiB  
Review
Update on Genetics of Primary Aldosteronism
by Kiyotaka Itcho, Kenji Oki, Haruya Ohno and Masayasu Yoneda
Biomedicines 2021, 9(4), 409; https://doi.org/10.3390/biomedicines9040409 - 10 Apr 2021
Cited by 15 | Viewed by 4711
Abstract
Primary aldosteronism (PA) is the most common form of secondary hypertension, with a prevalence of 5–10% among patients with hypertension. PA is mainly classified into two subtypes: aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism. Recent developments in genetic analysis have facilitated the discovery [...] Read more.
Primary aldosteronism (PA) is the most common form of secondary hypertension, with a prevalence of 5–10% among patients with hypertension. PA is mainly classified into two subtypes: aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism. Recent developments in genetic analysis have facilitated the discovery of mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CLCN2, and CTNNB1 in sporadic or familial forms of PA in the last decade. These findings have greatly advanced our understanding of the mechanism of excess aldosterone synthesis, particularly in APA. Most of the causative genes encode ion channels or pumps, and their mutations lead to depolarization of the cell membrane due to impairment of ion transport. Depolarization activates voltage-gated Ca2+ channels and intracellular calcium signaling and promotes the transcription of aldosterone synthase, resulting in overproduction of aldosterone. In this article, we review recent findings on the genetic and molecular mechanisms of PA. Full article
Show Figures

Figure 1

20 pages, 1873 KiB  
Review
Recent Development toward the Next Clinical Practice of Primary Aldosteronism: A Literature Review
by Yuta Tezuka, Yuto Yamazaki, Yasuhiro Nakamura, Hironobu Sasano and Fumitoshi Satoh
Biomedicines 2021, 9(3), 310; https://doi.org/10.3390/biomedicines9030310 - 17 Mar 2021
Cited by 2 | Viewed by 3232
Abstract
For the last seven decades, primary aldosteronism (PA) has been gradually recognized as a leading cause of secondary hypertension harboring increased risks of cardiovascular incidents compared to essential hypertension. Clinically, PA consists of two major subtypes, surgically curable and uncurable phenotypes, determined as [...] Read more.
For the last seven decades, primary aldosteronism (PA) has been gradually recognized as a leading cause of secondary hypertension harboring increased risks of cardiovascular incidents compared to essential hypertension. Clinically, PA consists of two major subtypes, surgically curable and uncurable phenotypes, determined as unilateral or bilateral PA by adrenal venous sampling. In order to further optimize the treatment, surgery or medications, diagnostic procedures from screening to subtype differentiation is indispensable, while in the general clinical practice, the work-up rate is extremely low even in the patients with refractory hypertension because of the time-consuming and labor-intensive nature of the procedures. Therefore, a novel tool to simplify the diagnostic flow has been recently in enormous demand. In this review, we focus on recent progress in the following clinically important topics of PA: prevalence of PA and its subtypes, newly revealed histopathological classification of aldosterone-producing lesions, novel diagnostic biomarkers and prediction scores. More effective strategy to diagnose PA based on better understanding of its epidemiology and pathology should lead to early detection of PA and could decrease the cardiovascular and renal complications of the patients. Full article
Show Figures

Figure 1

10 pages, 1511 KiB  
Review
Development and Carcinogenesis: Roles of GATA Factors in the Sympathoadrenal and Urogenital Systems
by Takashi Moriguchi
Biomedicines 2021, 9(3), 299; https://doi.org/10.3390/biomedicines9030299 - 15 Mar 2021
Cited by 8 | Viewed by 2077
Abstract
The GATA family of transcription factors consists of six proteins (GATA1-6) that control a variety of physiological and pathological processes. In particular, GATA2 and GATA3 are coexpressed in a number of tissues, including in the urogenital and sympathoadrenal systems, in which both factors [...] Read more.
The GATA family of transcription factors consists of six proteins (GATA1-6) that control a variety of physiological and pathological processes. In particular, GATA2 and GATA3 are coexpressed in a number of tissues, including in the urogenital and sympathoadrenal systems, in which both factors participate in the developmental process and tissue maintenance. Furthermore, accumulating studies have demonstrated that GATA2 and GATA3 are involved in distinct types of inherited diseases as well as carcinogenesis in diverse tissues. This review summarizes our current knowledge of how GATA2 and GATA3 participate in the transcriptional regulatory circuitry during the development of the sympathoadrenal and urogenital systems, and how their dysregulation results in the carcinogenesis of neuroblastoma, renal urothelial, and gynecologic cancers. Full article
Show Figures

Figure 1

Back to TopTop