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Abstract: The adrenal cortex produces steroid hormones as adrenocortical hormones in the body,
secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered
essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid
excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary
aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s
syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor
prognosis. Various genetic abnormalities have been reported, which are associated with possible
pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In
particular, somatic mutations in APAs have been detected in genes encoding membrane proteins,
especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular
calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA
signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In
ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been
implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics
and regulation of intracellular signaling and transcription factors in individual tumors.

Keywords: aldosterone-producing adenoma (APA); cortisol-producing adenoma (CPA); adrenocorti-
cal carcinoma (ACC); gene mutation; transcription factors

1. Introduction

Adrenocortical tumors are broadly classified into adenomas and carcinomas based
on their potential biological behavior. In addition, adrenocortical adenomas are further
subdivided into functional adenomas that secrete excessive steroid hormones and non-
functional ones which do not. In this review article, we will review the findings of recently
reported studies on genetic alterations and their regulation of intracellular signaling in
aldosterone-producing adenoma (APA) as a cause of primary aldosteronism (PA) and
cortisol-producing adenoma (CPA) as a cause of Cushing’s syndrome, subclinical Cush-
ing’s syndrome, and adrenocortical carcinoma (ACC). APA is an adenoma producing
excessive aldosterone autonomously, and somatic mutations of ion channels located at the
cell membrane have been frequently reported, resulting in alteration of calcium signaling
and its downstream transcription factors [1–5]. CPA is an autonomous cortisol-producing
adenoma in which somatic mutations in genes encoding those involved in intracellular
cAMP-PKA signaling [6–15] have been reported to be associated with their pathogenesis.
ACC is a highly malignant cancer originating from the adrenal cortex, and mutations in
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tumor suppressor genes [16–18], those involved in Wnt-β-catenin signaling [19–21], and
chromatin remodeling factors [19,20] have been reported to contribute to its pathogenesis.
In addition, transcription factors have been also reported to regulate the expression of
downstream genes by binding to other chromatin-related proteins and epigenomic regula-
tors to form transcription factor complexes. We will also review the relationship between
gene mutations and their regulation of transcription factors, as well as the association of
transcription factor complex formation in APA, CPA, and ACC.

2. The Pathogenesis and Molecular Mechanisms of Aldosterone Overproduction in
Aldosterone-Producing Adenoma (APA)

Somatic mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CLCN2, and
CTNNB1 genes have been frequently detected in APA [1–3,22–25]. KCNJ5 encodes a recti-
fying potassium ion channel (Kir 3.4) that regulates resting cellular membrane potential.
The genetic variants and hot spots of somatic mutations in KCNJ5 are well characterized,
including L168R, G151R, T158A, G151E, I157del, T152C, and E154Q [26,27]. All of these
somatic mutations can occur at ion-selective sites and cause loss of ion selectivity, leading
to persistent depolarization due to sodium ions influx into the cell. The depolarization of
cells enhances intracellular calcium signaling, which induces the expression of CYP11B2,
one of the rate-limiting enzymes in aldosterone synthesis (Figure 1). CYP11B2 expression
is mediated by orphan nuclear receptors such as NR4A1 (NGFIB), NR4A2 (NURR1), and
NR4A3 (NOR1) [28,29] and the activation of calcium signaling via CaM-CaMK [27,30].
It has also been reported that overexpression of mutant KCNJ5 in cell line experiments
increased intracellular calcium ion concentration due to depolarization, enhanced expres-
sion of NURR1, and induced expression of CYP11B2 [31]. These results suggest that the
hypersecretion of aldosterone caused by the KCNJ5 mutation is mediated by the activation
of NR4A family orphan receptors via calcium signaling through the increase in intracellular
calcium ion concentration, which in turn induces the expression of aldosterone synthesis
genes, including CYP11B2 (Figure 2).
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Figure 2. Gene mutations of membrane protein in APA. Depolarization of the plasma membrane 
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mutation causes hydrogen and sodium ion leak; ATP2B3 mutation causes impaired calcium ion 

Figure 2. Gene mutations of membrane protein in APA. Depolarization of the plasma membrane
is the common consequence in this mechanism. (A) Normal adrenal membrane proteins. (B) Gene
mutation in adrenal membrane proteins. KCNJ5 mutation causes inflow of sodium ion; ATP1A1
mutation causes hydrogen and sodium ion leak; ATP2B3 mutation causes impaired calcium ion
release; CLCN2 mutation causes impaired chloride ion release; and calcium ion influx is due to
mutations in CACNA1D and CACNA1H.

ATP1A1 encodes a sodium-potassium cotransporter (sodium/potassium-transporting
ATPase subunit alpha-1), a protein whose essential function is to export sodium ions out of
the cell and transport potassium ions into the cells. Genetic variants of somatic mutations
in ATP1A1 include L104R, del100_104, V332G, and G99R [2,22,33]. ATP1A1 L104R loses ion
selectivity and allows hydrogen ions to enter the cell, resulting in an increase in aldosterone
production via cell depolarization or intracellular acidification [34]. ATP1A1 del100_104 is
another genetic variant that causes loss of ion selectivity, and it has been reported that the
influx of sodium ions, due to the loss of ion selectivity, causes cell depolarization (Figure 2).
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The ATP2B3 gene [2,33] encodes a calcium transporter that consumes ATP and re-
moves calcium from cells. L425_V426del and V426_V427del are the major genetic variants
of somatic mutations detected in ATP2B3 genes, which cause the deletion of amino acids in
the calcium ion-exporting subunit, resulting in the loss of intracellular calcium ion export.
As a result, the increased intracellular calcium ion concentration induces depolarization
and activation of calcium signaling, which promotes the expression of genes involved in
aldosterone synthesis (Figure 2).

CACNA1D encodes an L-type calcium ion channel (CaV1.3), and somatic mutations
such as G403R, S652L, F747L, and R990H have been reported [3,35–37], while G403R, S652L,
F747L, and R900H mutations change calcium ion gating, and these phenotypes are a gain-
of-function in calcium channels. CACNA1H encodes a T-type calcium ion channel (CaV3.2),
and somatic mutations such as I1430T and T4289C have been reported [1]. Mutations in
CACNA1H lead to gain-of-function, which is a decrease in the threshold of the potential
for calcium ion influx into the cell, increasing intracellular calcium ion concentration,
subsequently triggering depolarization and promoting aldosterone secretion (Figure 2).

CLCN2 is a gene coding for chloride ion channels, and somatic mutations such as
G24D, 64-2-74del, and R172G have been reported [4,5,25,38]. CLCN2 has the ability to
efflux chloride ions from cells. The CLCN2 gene mutation increases the ability of CLCN2
to efflux chloride ions out of the cell and induces depolarization by disrupting the ion
gradient in and out of the cell (Figure 2).

CTNNB1 is a transcription factor involved in Wnt-β-catenin signaling and encodes
β-catenin. Somatic mutations in CTNNB1 are detected not only in adenomas but also in
ACC [18]. β-catenin is constantly degraded by phosphorylation. Inhibition of β-catenin
phosphorylation prevents its degradation, resulting in its migration and activity as a
transcription factor. Somatic mutations such as S33C, S45F, and S45P, which correspond to
the phosphorylation sites of β-catenin, are the major variants [39,40]. Recently, it has been
suggested that β-catenin induces the expression of NR4A family proteins and is involved
in CYP11B2 gene expression. This suggests that the increased transcriptional activity of
β-catenin may also contribute to aldosterone oversecretion (Figure 3).

The expression of CYP11B2 and HSD3B genes is upregulated in APA, and calcium
signaling plays a major role in CYP11B2 gene expression. In addition to the driver gene
somatic mutations mentioned above, various molecules that promote aldosterone biosyn-
thesis and could contribute to the possible pathogenesis of PA have also been reported.
There are also reports on the correlation between PA and factors that regulate intracellular
calcium ion concentration [41]. TASK is a potassium channel whose function is attenuated
by acidic extracellular conditions and the activation of Gq-coupled receptors. TASK is
also highly expressed in the adrenal cortex, and TASK1 and Task1/Task3-deficient mice are
particularly susceptible to depolarization of the adrenal cortex. TASK1 and Task1/Task3
deficient mice have been reported as in vivo models of PA, based on their findings of
induction of depolarization in the adrenal cortex [42]. PCP4 is a protein that promotes
the binding and dissociation of CaM and calcium ions, which are components of calcium
signaling. It has been reported that PCP4 is highly expressed in APA, and because PCP4
KD reduces the gene expression of CYP11B2 [43], it may be a factor that regulates the gene
expression of CYP11B2. Calneuron1 is a calcium-binding protein that transports cytosolic
calcium ions to the endoplasmic reticulum (ER), suggesting its roles in promoting Ca ion
accumulation in the ER. Calneuron1 is also reported to be highly expressed in APA [44],
suggesting that it is also an important factor in APA (Figure 4).

HSD3B2 was more highly expressed in the adrenal cortex than HSD3B1. However,
HSD3B2 expression was not significantly increased in normal tissues and APA. In contrast,
HSD3B1 is significantly upregulated in APA tissues compared to the normal adrenal cortex,
suggesting that HSD3B1 is an important factor in APA [45]. Gene expression of HSD3B1
is also dependent on calcium signaling and increases in response to the transcriptional
activity of the NR4A family of transcription factors, which are considered downstream
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transcription factors of calcium signaling. Therefore, the above calcium signal regulators
may be involved in the gene expression of CYP11B2 as well as HSD3B1.
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Figure 3. Mutation of CTNNB1 gene in APA. Mutations in β-catenin have been reported to activate
the pathway independent from cell membrane depolarization in APA. (A) Normal adrenal β-catenin
pathway. (B) Gene mutation in adrenal β-catenin pathway. β-catenin accumulates intracellularly
when Wnt binds to Frizzled and induces the expression of downstream genes. β-catenin mutations
cause Wnt-independent accumulation of β-catenin without degradation. Mutations in β-catenin
cause it to accumulate in a Wnt-independent manner. As a result, it induces cell proliferation by
activating downstream genes including AXIN2 and other cell proliferation-related genes. AXIN2 is
β-catenin regulator via GSK3B. On the other hand, it has been suggested that β-catenin induces the
expression of NR4A family proteins and affects CYP11B2 gene expression.
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Figure 4. Calcium signaling-related factors in APA. Calcium signaling-related factors that have
been implicated in the pathogenesis of APA include the potassium channels TASK, PCP4, and
Calneurin1. TASK is functionally defective due to genetic mutations that cause depolarization. PCP4
is a factor that activates CaM function. Calneurin1 is a protein that binds intracellular calcium ions
and transports them to the ER, where they enhance calcium signaling during depolarization.

The promoter region of the CYP11B2 gene contains transcription factor-binding se-
quences, such as the NGFI-B response element (NBRE), Ad4, Ad5, and Ad1. The NR4A
family is an orphan nuclear receptor for which no ligand has been identified, and its ex-
pression levels and intracellular signaling may contribute to the expression of downstream
genes [28,46,47]. The NR4A family is known to regulate the expression of downstream
genes in response to their expression levels and intracellular signals. The exposure of
H295R cells, a human ACC-derived cell line, to hyperglycemic conditions was reported to
induce the expression of NURR1, a member of the NR4A family of transcription factors,
and CYP11B2 [48]. It is known that transcription factors interact with transcription factor
complexes, a group of proteins that alter the epigenomic status of chromatin to regulate
the transcription of target genes. NGFIB interacts with RXR, a heterodimer partner, as
well as with p300 [49], SRC-1 [50], and other histone modification factors and regulates the
expression of downstream genes. NURR1 is known to interact with RXR and SRC-1 [51] as
well as NGFIB. However, there are few reports on the analysis of transcriptional activation
complexes in the adrenal gland for both NGFIB and NURR1, and the details of transcription
factor complexes that may affect gene expression, such as CYP11B2, still remain unknown.
In 2018, we identified poly (ADP-ribose) polymerase 1 (PARP1) as a transcription factor
complex of NURR1 in H295R cells [52] (Figure 5). This is an in vitro study, but it could
contribute to our understanding of the unknown transcription factor complex of NURR1.
SF-1 has been identified as a transcription factor that binds to the Ad4 region, also known
as Ad4BP, and is known to be essential for adrenal and gonadal development. SF-1 expres-
sion is also reported to be upregulated in APA [53], suggesting that it affects aldosterone
synthesis in APA. SF-1 has been reported to be involved in steroid synthesis. Recently,
it was reported that SF-1 regulates not only the expression of steroid synthase but also
the expression of glycolytic enzymes [54] and cholesterol synthase [55]. COUP-TF is a
transcription factor that binds to the Ad5 region and represses the transcriptional activity of
CYP11B2 in the adrenal cortex. Recently, it has been reported that COUP-TF contributes to
the repression of transcriptional activity by interacting with Ubc9, a SUMO-transferase [56].
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Figure 5. Transcriptional regulation of steroidogenic genes by the NR4A family. The promoter
regions of CYP11B2 and HSD3B1 contain NR4A family binding sequences such as NGFIB and
Nurr1, which regulate gene expression of CYP11B2 and HSD3B1 by forming a transcription factor
complex. (A) Gene expression of CYP11B2 by NR4A family. (B) Gene expression of HSD3B1 by
NR4A family. Although p300, SRC-1, and PARP1 have been reported as components of the complex,
other components are still unknown.

On the other hand, there are few reports on the expression level of APA, and the
relationship with steroidogenesis awaits further investigation. The promoter regions of
the HSD3B1 and HSD3B2 genes also contain NBRE, Ad4, Ad5, and Ad1 as transcription
factor binding sequences [45,57]. The promoter regions of the HSD3B1 and HSD3B2 genes
also contain NBREs, suggesting that transcription is regulated by the NR4A family of
transcription factors.

In addition, new therapeutic agents have recently been investigated. In particular,
macrolide antibiotics have been suggested to inhibit aldosterone secretion by suppressing
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the function of KCNJ5 mutations [58]. It has been suggested that macrolide antibiotics
inhibit cell-autonomous depolarization by binding to mutated KCNJ5 and preventing
the influx of sodium ions into the cell. Similarly, for treating APA, it is thought that
downregulating the expression of HSD3B1, one of the genes in the aldosterone synthesis
system, and CYP11B2, the rate-limiting enzyme in aldosterone synthesis, suppresses
excessive aldosterone secretion. HSD3B1 gene expression is induced by orphan nuclear
receptors such as NGFIB, NURR1, and NOR1 [45,57]. NGFIB, NURR1, NOR1, COUP-TF,
SF-1, and cAMP-response element-binding protein (CREB) are transcription factors that
induce CYP11B2 gene expression [28,47].

Among them, NURR1 is a nuclear receptor whose expression increases when the
intracellular calcium concentration transcriptional activity increases. NURR1 also interacts
with PARP1 to regulate the transcriptional activity of target genes [52]. In vitro, it has
been reported that inhibitors of PARP1 suppress aldosterone secretion by suppressing
the expression of HSD3B1 and CYP11B2 [52]. In addition, bortezomib was reported
to decrease CYP11B2 gene expression by altering the epigenomic state upstream of the
CYP11B2 gene [59]. In addition, the drug-induced activation of other nuclear receptors,
such as PPARγ and RXR with ligands, was reported to decrease CYP11B2 expression via
NR4A family transcription factors such as NURR1 [60,61]. Although there are still many
unanswered questions on potential nuclear receptor crosstalk, this is an interesting finding
regarding the role of nuclear receptors in the adrenal cortex. There are also reports of
compounds that inhibit aldosterone secretion by directly inhibiting the enzymatic activity
of CYP11B2. Reports on the treatment of APA have focused on the development of drugs
targeting the driver genes involved in aldosterone excess in APA, such as KCNJ5, as well
as on the gene expression and enzyme activity of CYP11B2 and other enzymes in the
aldosterone synthesis system.

3. The Pathogenesis and Molecular Mechanisms of Cortisol Production in
Cortisol-Producing Adenoma (CPA)

CPAs, which secrete cortisol autonomously, cause Cushing’s syndrome and subclinical
Cushing’s syndrome. Recently, CPA has been reported to be caused by somatic mutations
of cAMP-PKA signaling factors, such as PRKACA, PRKACB, PRKAR1A, and PRKAR1B
mutations [6,14,62], as well as genetic mutations in cAMP-degrading enzymes such as
PDE8B and PDE11A [11,12] (Figure 6). In addition, GNAS mutations that enhance MC2R
function are also causative mutations in CPA [63].

PRKACA and PRKACB both constitute the enzymatically active subunits of PKA,
and their mutations cause direct changes in the enzymatic activity of PKA [6,14,15,62].
PRKACA mutations were also reported in L206R and L199_C200insW, while PRKACB
mutations were reported in S54L. Both genetic mutations also inhibit the recruitment of
regulatory subunits and increase the kinase activity of PKA, which results in increased
gene expression of CYP11B1 and increased secretion of cortisol. Recently, gene expression
profiling of PRKACA-mutated CPA has been performed by RNA-seq analysis, and it is
expected to reveal the whole picture of gene expression in PRKACA-mutated CPA [64].

PRKAR1A encodes the regulatory subunit 1α of PKA, and PRKAR1B encodes the reg-
ulatory subunit 1β of PKA, which has two subunits: a catalytic subunit that has enzymatic
activity and a regulatory subunit that controls enzymatic activity. Loss-of-function muta-
tions in the regulatory subunit increase the enzymatic activity of PKA and activate PKA
signaling. The activation of PKA signaling in the adrenal cortex induces the expression
of CYP11B1, which promotes cortisol secretion, suggesting that the loss of function of the
regulatory subunit of PKA is associated with the hypersecretion of cortisol. p.I40V, p.A67V,
p.A300T, and other mutations in PRKAR1B have been reported [7]. p.A300T and p.A67V
are reported mutations that decrease the activity of PKA [65], which is contradictory con-
sidering that PKA activation increases the gene expression of CYP11B1, but further studies
are required for clarification.
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Figure 6. Genetic mutation in CPA. Cortisol is secreted by inducing the gene expression of CYP11B1, and ACTH activates
cAMP-PKA signaling by binding to MC2R of ZF cells, inducing the gene expression of CYP11B1. (A) Normal adrenal
cAMP-PKA pathway. (B) Gene mutation in adrenal cAMP-PKA pathway. In CPA, mutations in PRKAR1B, PRKACA, and
PRKACB, which are subunit genes of PKA, and mutations in PDE8B and PDE11A, which are enzymes that degrade cAMP,
have been reported.
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In contrast, phosphodiesterase (PDE) family proteins, to which PDE8B and PDE11A
belong, function as cAMP-degrading enzymes. When intracellular cAMP is degraded by
PDE family proteins, PKA decreases its enzymatic activity due to a decrease in intracellular
cAMP concentration. Mutation of PDE family proteins causes the loss of enzymatic activity,
which leads to the loss of intracellular cAMP degradation, an increase in intracellular cAMP
concentration, and an increase in PKA activity. It has been reported that PDE8B is predomi-
nantly expressed in the adrenal glands and other steroid hormone-secreting organs. H305P
decreases the enzymatic activity of PDE8B and increases the concentration of intracellular
cAMP [9,11]. PDE11A, D609N, and M878V are mutations that decrease the enzymatic
activity of PDE11A [9,12], similar to PDE8B mutations, and increase the concentration of
intracellular cAMP. Due to the increased cAMP, PKA activity is subsequently increased,
resulting in increased expression of CYP11B1, leading to hypersecretion of cortisol.

Mutations in the guanine nucleotide-binding protein subunit alpha (GNAS) gene, a
G-protein alpha-subunit associated with MC2R, have also been reported in CPA. GNAS
mutations activate cAMP-PKA signaling, which in turn enhances the expression of the
downstream CYP11B1 gene [63]. The promoter region of the CYP11B1 gene contains
transcription factor binding sequences such as Ad4, Ad5, and Ad1 [66]. Ad4 binds SF-1,
while Ad5 binds orphan nuclear receptors such as those in the NR4A family and COUP-TF.
In addition, Ad1 binds cAMP-PKA-responsive transcription factors such as CREB and
CREM. CREB and CREM are thought to be important in CPA, where genetic mutations in
cAMP-PKA signaling factors are common. Previous in vitro studies have shown that the
Ad1 region plays a central role in transcriptional activation when cAMP-PKA signaling is
activated, and CREB and CREM are considered the most important transcription factors
in CPA. The CREB transcription factor-activating complex is composed mainly of HATs,
such as p300 [67,68] and CREB-binding protein (CBP) [69] (Figure 7). However, there are
no reports on the analysis of the CREB transcription factor complex in the adrenal gland,
which is an important issue to be addressed in the future. The interaction of CREB with
β-catenin and glucocorticoid receptors (GR) has been reported in other organs [70], which
may provide interesting results.
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Figure 7. Transcriptional regulation of the CYP11B1 gene by the CREB family. The CREB family,
including CREB and CREM, is involved in the regulation of gene expression of CYP11B1, a cortisol
synthase. CREB has been identified as a component of the transcription factor complex with p300
and CBP, but the other components are still unknown.
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4. The Pathogenesis and Molecular Mechanisms in Adrenocortical Carcinoma (ACC)

ACC is a malignant tumor arising from the adrenal cortex. The frequency of ACC is
relatively low (approximately 1–2 per million), but its prognosis is poor or dismal due to
its rapid clinical growth and progression. There are two types of ACCs: functional tumors
that are based on the presence of hormone excess and nonfunctional tumors that do not
secrete hormones.

Genetic mutations in adrenocortical malignancies have been detected in tumor sup-
pressor genes such as TP53 and RB1 [17,71,72], mutations in Wnt-β-catenin system genes
such as ZNRF3 and CTNNB1 [17,21,71], mutations in cell cycle-related genes such as
CDKN2A [17], and mutations in epigenomic and chromatin remodeling regulators such
as DAXX, MED12, and MEN1 [17,71]. In addition, IGF2 (insulin-like growth factor 2),
PRKAR1A, RPL22 (ribosomal protein L22), CCNE1 (cyclin E1), CDK4 (cyclin dependent
kinase 4), TERT (telomerase reverse transcriptase), and TERF2 (telomeric repeat binding
factor 2) have also been reported as genetic mutations in ACC [20].

Mutations in tumor suppressor genes are also frequently reported in cancers of other
organs, and they play important roles in the pathogenesis of ACC.

TP53 mutations in ACC are nonsense or frameshift mutations that cause a loss of TP53
function [20]. TP53 gene is also known to be the causative gene of Li-Fraumeni syndrome.
TP53 encodes p53 protein. The p53 protein is constantly degraded and accumulates in the
cells when it detects DNA damage and suppresses cell growth [73]. The deletion of p53
leads to uncontrolled cell proliferation, which in turn leads to the growth of carcinoma
cells. RB1 is a tumor suppressor gene detected in retinoblastoma, and RB protein binds to
the transcription factor E2F and inhibits its transcriptional activity, thereby suppressing
cell growth [74]. In ACC, RB has been reported to be functionally suppressive, suggesting
that the RB-mediated cell growth suppression mechanism is disrupted [17,18].

Mutations in the Wnt-β-catenin system, an important intracellular signal for cell pro-
liferation, are also important. β-catenin is a transcription factor that is constantly degraded,
and its degradation mechanism is regulated by the phosphorylation of β-catenin [75].
Wnt proteins bind to the Frizzled receptor and couple with the LRP receptor, inactivating
GSK3B, which is a phosphatase of β-catenin, allowing β-catenin protein to be spared from
degradation [75,76]. As a result, β-catenin accumulates in the cells and contributes to the
expression of downstream genes. Of note, the CTNNB1 mutation was frequently detected
in ACC, suggesting its possible contribution to tumor growth or progression. β-catenin is
a transcription factor, and its activation depends not only on the accumulation of β-catenin
in the nucleus by post-translational modification but also on the effect of transcription
factor complexes. Therefore, it is expected that the epigenomic factors that construct the
transcription factor complex will be elucidated in the future, in order to be able to develop
drugs that specifically target it.

ZNRF3 is a cell surface ubiquitin ligase that regulates Wnt-β-catenin signaling by
ubiquitinating and degrading the Wnt protein receptors Frizzled and LRP6 [77]. When
ZNRF3 loses its activity due to mutation, Wnt-β-catenin signaling is not regulated and
β-catenin activity is increased [17,71] (Figure 8).

Additionally, mutations in epigenetic regulators may increase the transcriptional
activity of β-catenin, which may be involved in tumorigenesis.

MED12 (mediator of RNA polymerase II transcription subunit 12 homolog) is a
known factor that interacts with RNA polymerase. MED12 is involved in the activity of β-
catenin, and its mutation has been reported to increase the activity of Akt and decrease the
activity of GSK3B, an upstream regulator of β-catenin, resulting in increased transcriptional
activity of β-catenin [78–80]. This suggests that MED12 mutations contribute to the growth
of malignant tumors [17,79,80]. However, the details of molecular regulation between
mutations and growth, as well as changes in chromatin status and cancer caused by MED12
mutations, remain unclear, and future studies are expected (Figure 8).
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Figure 8. Genetic mutations in adrenocortical carcinoma. In adrenocortical carcinoma, mutations in
the β-catenin system have been reported. (A) β-catenin pathway in non-ACC. (B) β-catenin pathway
in ACC. AXIN2 is β-catenin regulator via GSK3B. ZNRF3 is a ubiquitin ligase that regulates the
degradation of Frizzled and LRP6. Mutation of MED12 enhances the activation of Akt and further
enhances the transcriptional activity of β-catenin.

MEN1 encodes Menin, is a tumor suppressor gene and a causative gene of multiple
endocrine neoplasia type 1 (MEN1). MEN1 acts as a transcriptional repressor in the
epigenome, forming protein–protein interactions with various transcription factors and
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repressing their transcriptional activity. It has been reported that MEN1 also binds to
β-catenin and affects its transcriptional activity, while β-catenin has been reported to
activate transcription [81,82]. Mutations in MEN1 have been implicated in the pathogenesis
of MEN1, and Menin promotes the expression of p27 mutations in MEN1, which have
been implicated in the pathogenesis of MEN1. However, the mechanism by which Menin
promotes p27 expression and inhibits cell proliferation is thought to be disrupted by genetic
mutations [82]. The same is thought to be true in adrenal cancers.

DAXX, a chromatin remodeling factor, affects histone H3.3 and promotes telomere
elongation. It also interacts with β-catenin and TCF4 to increase its transcriptional activ-
ity [83]. Mutations of DAXX in ACC are often reported to be deletion type mutations, and
their relevance to proliferation is currently unclear.

IGF2 is a key factor in adrenal development, and increased gene expression has been
reported in ACC [84]. IGF2 has been reported to proliferate H295R cells [85], suggesting
that it is an important factor in the proliferation of ACC. Recently, novel gene mutations
have been investigated in RPL22, CCNE1, CDK4, TERT, and TERF2 in ACC using RNA
sequencing [20]. CCNE1 and CDK4 are cell cycle regulating genes, which control cell
proliferation, while TERT and TERF2 are telomere-related genes, which regulate cell
senescence and immortality.

Additionally, ACC has been investigated using next-generation sequencing, and
mutations in genes such as LRIG1, ZFPM1, CRIPAK, GARS, and ZNF517 have been discov-
ered [16]. Although the correlation between adrenocortical cell tumorigenesis and cancer
malignancy remains unclear, it is expected to be a topic for future research on genetic
mutations in ACC.

As mentioned above, β-catenin, which plays a critical role in adrenal carcinoma,
binds to the transcription factors TCF or LEF to form transcription factor complexes.
p300 [86], CBP [87], and other HATs, and MLL1/2 [88] belonging to the lysine-specific
methyltransferase (KMT) family of proteins, are representative components of β-catenin
transcription factor complexes. However, the β-catenin transcription complex in the
adrenal gland has not been studied in detail, and the analysis of organ-specific transcription
factor complexes has not progressed.

5. Conclusions

In APA, the cause of PA, the upregulation of aldosterone synthesis genes by calcium
signaling is a key cascade that enhances aldosterone secretion by activating transcription
factors, mainly the NR4A family. In CPA, the activation of cAMP-responsive transcription
factors such as CREB increases cortisol secretion by upregulating the gene expression of
CYP11B1. The Wnt-β-catenin system is important in ACC, and the suppression of β-catenin
transcriptional activity is important in future therapeutic development. Mutations of β-catenin
have been reported in adenomas, but β-catenin is mainly involved in tumorigenesis, and in
adenomas, it seems to promote steroid production as a secondary effect by affecting the NR4A
family and CREB. In addition, the presence of transcription factor complexes is important for
the activation of transcription factors, and future studies focusing on transcription factors and
transcription factor complexes are warranted in APA, CPA, and ACC.
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Abbreviations

KCNJ5 potassium inwardly rectifying channel subfamily J member 5
ATP1A1 ATPase Na+/K+ transporting subunit alpha 1
ATP2B3 ATPase plasma membrane Ca2+ transporting 3
CACNA1D calcium voltage-gated channel subunit alpha1 D
CACNA1H calcium voltage-gated channel subunit alpha1 H
CLCN2 chloride voltage-gated channel 2
CTNNB1 catenin beta 1
NR4A1 nuclear receptor subfamily 4, group A, member 1
NR4A2 nuclear receptor subfamily 4, group A, member 2
NR4A3 nuclear receptor subfamily 4, group A, member 3
CYP11B2 cytochrome P450 family 11 subfamily B member 2
HSD3B1 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1
HSD3B2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2
GSK3B glycogen synthase kinase 3 beta
TASK1 potassium two pore domain channel subfamily K member 3
PCP4 Purkinje cell protein 4
SRC-1 nuclear receptor coactivator 1
SF-1 nuclear receptor subfamily 5 group A member 1, Steroidogenic factor-1
COUP-TF nuclear receptor subfamily 2 group F member 1
PRKACA protein kinase cAMP-activated catalytic subunit alpha
PRKACB protein kinase cAMP-activated catalytic subunit beta
PRKAR1A protein kinase cAMP-dependent type I regulatory subunit alpha
PRKAR1B protein kinase cAMP-dependent type I regulatory subunit beta
CYP11B1 cytochrome P450 family 11 subfamily B member 1
PDE8B phosphodiesterase 8B
PDE11A phosphodiesterase 11A
GNAS guanine nucleotide binding protein, alpha stimulating complex locus
TP53 tumor protein p53
RB1 retinoblastoma transcriptional corepressor 1
ZNRF3 zinc and ring finger 3
CDKN2A cyclin dependent kinase inhibitor 2A
DAXX death domain associated protein
MED12 mediator complex subunit 12
MEN1 menin 1
IGF2 insulin like growth factor 2
RPL22 ribosomal protein L22
CCNE1 cyclin E1
CDK4 cyclin dependent kinase 4
TERT telomerase reverse transcriptase
TERF2 telomeric repeat binding factor 2
MLL1 lysine methyltransferase 2A
MLL2 lysine methyltransferase 2D
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