Journal Description
BioChem
BioChem
is an international, peer-reviewed, open access journal on biochemistry published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 24.1 days after submission; acceptance to publication is undertaken in 5.1 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Evaluating the Health Implications of Kombucha Fermented with Gardenia jasminoides Teas: A Comprehensive Analysis of Antioxidant, Antimicrobial, and Cytotoxic Properties
BioChem 2024, 4(4), 350-370; https://doi.org/10.3390/biochem4040018 (registering DOI) - 15 Dec 2024
Abstract
►
Show Figures
Background/Objectives: Plant-derived compounds are increasingly valued in drug discovery for their therapeutic potential. This study aims to examine the antimicrobial, antioxidant, and anticancer properties of kombucha beverages fermented with Gardenia jasminoides (GJ) and various types of Camellia sinensis teas: matcha green tea (MGT),
[...] Read more.
Background/Objectives: Plant-derived compounds are increasingly valued in drug discovery for their therapeutic potential. This study aims to examine the antimicrobial, antioxidant, and anticancer properties of kombucha beverages fermented with Gardenia jasminoides (GJ) and various types of Camellia sinensis teas: matcha green tea (MGT), organic green tea (OGT), and decaffeinated green tea (DGT). Methods: Two experimental designs were employed: (1) using black tea as a base substrate, infusing the four teas post-fermentation over 0–14 days, and (2) directly fermenting tea–herb combinations over 0–21 days. Antioxidant activity was assessed via the DPPH assay. Microbial dynamics were analyzed through total mesophilic bacteria and Lactobacillus counts. Antimicrobial potential was evaluated against E. coli, S. aureus, and S. enteritidis over 24 h. Cytotoxicity assays were conducted on Caco-2 and U251 cell lines to assess anticancer effects, with pH-adjusted controls used to differentiate bioactivity from acidity. Results: In the first experiment, GJ kombucha displayed the highest antioxidant potential (IC50: 14.04 µg/mL), followed by MGT (IC50: 32.85 µg/mL) and OGT (IC50: 98.21 µg/mL). In the second setup, unfermented GJ kombucha initially showed high antioxidant activity (IC50: 12.94 µg/mL), improving during fermentation to reach an IC50 of 18.26 µg/mL by day 21. Microbial analysis indicated moderate increases in total mesophilic bacteria and Lactobacillus in GJ kombucha after 14 days, while MGT, OGT, and DGT exhibited higher increments. GJ kombucha consistently demonstrated the highest antimicrobial activity against E. coli, S. aureus, and S. enteritidis, with significant inhibitory effects observed by 24 h. Cytotoxicity assays showed that GJ kombucha reduced Caco-2 cell viability to 20% at 800 µg/mL after 14 days, while U251 cells maintained 50% viability at the same concentration. Conclusions: This study highlights the antimicrobial, antioxidant, and anticancer potential of GJ kombucha, with fermentation enhancing bioactive metabolite production. Optimizing fermentation conditions, identifying specific bioactive compounds, expanding cytotoxicity testing, and exploring broader therapeutic applications of kombucha could maximize its health benefits and establish it as a natural antimicrobial and anticancer agent.
Full article
Open AccessReview
Biotechnological Advances in Vanillin Production: From Natural Vanilla to Metabolic Engineering Platforms
by
Arnold William Tazon, Fatima Awwad, Fatma Meddeb-Mouelhi and Isabel Desgagné-Penix
BioChem 2024, 4(4), 323-349; https://doi.org/10.3390/biochem4040017 - 27 Nov 2024
Abstract
Vanillin, an aromatic aldehyde, is one of the most popular flavors worldwide, extensively used in the food, cosmetics, pharmaceutical, and agrochemical industries. Despite its widespread use, less than 1% of the total vanillin production is natural, with the majority being synthesized chemically. While
[...] Read more.
Vanillin, an aromatic aldehyde, is one of the most popular flavors worldwide, extensively used in the food, cosmetics, pharmaceutical, and agrochemical industries. Despite its widespread use, less than 1% of the total vanillin production is natural, with the majority being synthesized chemically. While chemical synthesis can help to meet the growing demand for vanillin, a strong market trend has rapidly developed for products created from natural ingredients, including natural vanillin. Given the labor-intensive process of extracting vanillin from vanilla pods, there is a critical need for new metabolic engineering platforms to support the biotechnological production of nature-identical vanillin. This review highlights the significance of vanillin in various markets, its diverse applications, and the current state of bio-engineered production using both prokaryotic and eukaryotic biological systems. Although recent advancements have demonstrated successful vanillin production through biocatalytic approaches, our focus was to provide a current and innovative overview of vanillin bioengineering across various host systems with special consideration placed on microalgae, which are emerging as promising platforms for vanillin production through metabolic engineering. The use of these systems to support the biotechnological production of vanillin, while leveraging the photosynthetic capabilities of microalgae to capture CO2 and convert it into biomass, can significantly reduce the overall carbon footprint.
Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
►▼
Show Figures
Figure 1
Open AccessArticle
Anti-Müllerian Hormone Serum Levels as Biomarker of Ovarian Reserve in Adult Women with Juvenile Idiopathic Arthritis Treated with csDMARDs and/or bDMARDs: A Pilot Study
by
Clara Di Mario, Maria Rita Gigante, Angelina Barini, Luca Petricca, Antonella Barini, Antonio Bianchi, Stefano Alivernini, Barbara Tolusso and Elisa Gremese
BioChem 2024, 4(4), 313-322; https://doi.org/10.3390/biochem4040016 - 18 Oct 2024
Abstract
Background/Objectives: Juvenile idiopathic arthritis (JIA) is a chronic childhood disease that often persists into the reproductive years. JIA may impact long-term fertility due to the prolonged exposure to immunosuppressive therapies. Methods: A total of 35 adult JIA female patients of childbearing age and
[...] Read more.
Background/Objectives: Juvenile idiopathic arthritis (JIA) is a chronic childhood disease that often persists into the reproductive years. JIA may impact long-term fertility due to the prolonged exposure to immunosuppressive therapies. Methods: A total of 35 adult JIA female patients of childbearing age and 20 age-matched healthy controls were studied to test their anti-Müllerian hormone (AMH) serum levels as a biomarker of ovarian reserve. Demographic characteristics, disease duration, previous and current treatments, disease activity (DAS44), and a health assessment questionnaire (HAQ) were recorded. Results: JIA patients had a mean age of 22.3 ± 2.9 years, a disease duration of 12.3 ± 6.1 years, and a DAS44 of 1.24 ± 0.61. No differences were found in AMH serum levels between JIA and controls (5.78 ± 2.37 ng/mL vs. 6.60 ± 2.68 ng/mL, respectively; p = 0.17). Among the patients, 22 (62.9%) were receiving a stable dose of methotrexate (MTX) and 19 (54.3%) a dose of TNFα inhibitors. No difference in AMH serum levels was observed between JIA patients who were or were not exposed to MTX (p = 0.29) or to TNFα inhibitors (p = 0.50). Conclusions: Ovarian reserve as assessed by AMH serum levels appears to be comparable between those with JIA and age-matched controls and does not appear to be influenced by disease characteristics or prior/concomitant exposure to immunosuppressive drugs.
Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
►▼
Show Figures
Figure 1
Open AccessSystematic Review
Appropriate Prescription of Non-Steroidal Anti-Inflammatory Drugs in Geriatric Patients—A Systematic Review
by
Carolina Costa, Diana Soares, Ana Borges, Ana Gonçalves, José Paulo Andrade and Hugo Ribeiro
BioChem 2024, 4(4), 300-312; https://doi.org/10.3390/biochem4040015 - 11 Oct 2024
Abstract
The elderly population is growing worldwide. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed, but their adverse events can pose significant risks. Different NSAID molecules can exhibit varying risk profiles. This study aims to evaluate the cardiovascular, gastrointestinal, and renal safety profiles of ibuprofen,
[...] Read more.
The elderly population is growing worldwide. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed, but their adverse events can pose significant risks. Different NSAID molecules can exhibit varying risk profiles. This study aims to evaluate the cardiovascular, gastrointestinal, and renal safety profiles of ibuprofen, naproxen, acemetacin, diclofenac, celecoxib, and etoricoxib in elderly patients. A comprehensive literature search was conducted in PubMed and Cochrane Library. For the selection of articles, we used Medical Subject Headings (MeSH) terms “aged” sequentially and together with “ibuprofen”, “diclofenac”, “naproxen”, “acemetacin”, “celecoxib”, and “etoricoxib”. To assess the quality and interest of the articles, four independent reviewers screened titles and abstracts to identify potentially eligible studies. Strength of Recommendation Taxonomy (SORT) was used to rate the quality of individual studies and to establish recommendation strengths (RS). From 2086 articles identified, 39 studies met the inclusion criteria. Twenty studies analyzed cardiovascular safety, fourteen gastrointestinal safety, and four renal safety. When CV risk is the main concern celecoxib or naproxen are a good first choice (RS B). In high GI risk addition of PPI to naproxen or celecoxib use should be recommended (RS A). When renal function is on focus, celecoxib remains as first line of therapy (RS A). Diclofenac in the geriatric population should be avoided (RS B). Celecoxib is a good choice for elderly patients for whom it is difficult to direct pain treatment based on a single known risk factor (RS B).
Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
►▼
Show Figures
Figure 1
Open AccessReview
Mechanistic Insights into Targeting SARS-CoV-2 Papain-like Protease in the Evolution and Management of COVID-19
by
Nonjabulo Ntombikhona Magwaza, Aganze Gloire-Aimé Mushebenge, Samuel Chima Ugbaja, Nonkululeko Avril Mbatha, Rene B. Khan and Hezekiel M. Kumalo
BioChem 2024, 4(3), 268-299; https://doi.org/10.3390/biochem4030014 - 23 Sep 2024
Abstract
►▼
Show Figures
The COVID-19 pandemic, instigated by the emergence of the novel coronavirus, SARS-CoV-2, created an incomparable global health crisis. Due to its highly virulent nature, identifying potential therapeutic agents against this lethal virus is crucial. PLpro is a key protein involved in viral polyprotein
[...] Read more.
The COVID-19 pandemic, instigated by the emergence of the novel coronavirus, SARS-CoV-2, created an incomparable global health crisis. Due to its highly virulent nature, identifying potential therapeutic agents against this lethal virus is crucial. PLpro is a key protein involved in viral polyprotein processing and immune system evasion, making it a prime target for the development of antiviral drugs to combat COVID-19. To expedite the search for potential therapeutic candidates, this review delved into computational studies. Recent investigations have harnessed computational methods to identify promising inhibitors targeting PLpro, aiming to suppress the viral activity. Molecular docking techniques were employed by researchers to explore the binding sites for antiviral drugs within the catalytic region of PLpro. The review elucidates the functional and structural properties of SARS-CoV-2 PLpro, underscoring its significance in viral pathogenicity and replication. Through comprehensive all-atom molecular dynamics (MD) simulations, the stability of drug–PLpro complexes was assessed, providing dynamic insights into their interactions. By evaluating binding energy estimates from MD simulations, stable drug–PLpro complexes with potential antiviral properties were identified. This review offers a comprehensive overview of the potential drug/lead candidates discovered thus far against PLpro using diverse in silico methodologies, encompassing drug repurposing, structure-based, and ligand-based virtual screenings. Additionally, the identified drugs are listed based on their chemical structures and meticulously examined according to various structural parameters, such as the estimated binding free energy (ΔG), types of intermolecular interactions, and structural stability of PLpro–ligand complexes, as determined from the outcomes of the MD simulations. Underscoring the pivotal role of targeting SARS-CoV-2 PLpro in the battle against COVID-19, this review establishes a robust foundation for identifying promising antiviral drug candidates by integrating molecular dynamics simulations, structural modeling, and computational insights. The continual imperative for the improvement of existing drugs and exploring novel compounds remains paramount in the global efforts to combat COVID-19. The evolution and management of COVID-19 hinge on the symbiotic relationship between computational insights and experimental validation, underscoring the interdisciplinary synergy crucial to this endeavor.
Full article
Figure 1
Open AccessArticle
Neurotransmitter Availability and Anti-Inflammatory and Antioxidant Effects of Subacute Administration of Aloysia gratissima (Gillies & Hook) Tronc. and Rutin in Female Wistar Rats
by
Gênifer Erminda Schreiner, Elizandra Gomes Schmitt, Gabriela Escalante Brittes, Laura Smolski dos Santos, Luana Tamires Maders, Itamar Luís Gonçalves, Sílvia Muller de Moura Sarmento, Nessana Dartora and Vanusa Manfredini
BioChem 2024, 4(3), 252-267; https://doi.org/10.3390/biochem4030013 - 20 Sep 2024
Abstract
►▼
Show Figures
Background: Levels of chronic inflammation, oxidative stress, and neurotransmitter availability are altered in depressed patients and can be used as biological markers. This study aimed to analyze these markers in female Wistar rats under chronic inflammation induced by E. coli lipopolysaccharide (LPS), treated
[...] Read more.
Background: Levels of chronic inflammation, oxidative stress, and neurotransmitter availability are altered in depressed patients and can be used as biological markers. This study aimed to analyze these markers in female Wistar rats under chronic inflammation induced by E. coli lipopolysaccharide (LPS), treated with aqueous extract of A. gratissima and rutin, the major flavonoid of its extract. Methods: Thirty female Wistar rats under a chronic inflammatory regimen induced by 1 mg/kg i.p. of LPS were divided into six experimental groups: control (1), treated with fluoxetine 5 mg/kg (2), rutin at 50 mg/kg (3) or 100 mg/kg (4), aqueous extract of A. gratissima 100 mg/kg (5), and co-treatment with 50 mg/kg of extract and 10 mg/kg of rutin (6). Treatments were administered by gavage for 15 days. Results: Oxidative damage to proteins and lipids was lower in group 6 compared to group 2. Pro- and anti-inflammatory cytokines increased in group 1 but not in group 2, indicating a relationship with depression. Similar effects were observed in the treated groups, showing no significant differences from group 2. Neurotransmitter levels of dopamine and serotonin were low in group 1, and all treatments effectively increased them. Additionally, A. gratissima extract at 100 ppm increased locomotor activity in planarians. Conclusions: This study demonstrates the effectiveness of the LPS induction model in subacute experimental designs and the potential antidepressant effect of the treatments due to their antioxidant and anti-inflammatory properties, and ability to increase neurotransmitter levels.
Full article
Figure 1
Open AccessReview
The Prospect and Challenges of Repurposing Established Drugs in Pulmonary Arterial Hypertension
by
Sila Ozlem Sener, Rateep Nasim and Talat Nasim
BioChem 2024, 4(3), 236-251; https://doi.org/10.3390/biochem4030012 - 10 Sep 2024
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder caused by the narrowing of small blood vessels in the lungs, which, in the absence of therapies, leads to right heart failure and premature death. No cure for this devastating disorder is known. Current management
[...] Read more.
Pulmonary arterial hypertension (PAH) is a progressive disorder caused by the narrowing of small blood vessels in the lungs, which, in the absence of therapies, leads to right heart failure and premature death. No cure for this devastating disorder is known. Current management therapies aim to improve symptoms, and hence, there is a need to identify novel therapeutic interventions. The major objectives of this review are to critically evaluate current treatment strategies and highlight the challenges and prospects of established drugs and natural products for the resolution of PAH.
Full article
(This article belongs to the Special Issue Therapeutic Resolution of Pulmonary Arterial Hypertension)
►▼
Show Figures
Figure 1
Open AccessArticle
Tillandsia usneoides Ethanolic Extract Induces Cytotoxicity in SW480 Colon Cancer Cell Line via PPARγ Modulation
by
María Paula López, María Camila Jiménez, Julián Esteban Contreras, Laura Rojas, Susana Fiorentino and José Iglesias
BioChem 2024, 4(3), 217-235; https://doi.org/10.3390/biochem4030011 - 26 Aug 2024
Abstract
Colorectal cancer (CRC) is a prevalent and deadly tumor worldwide. Understanding the molecular mechanisms underlying CRC development will improve treatment outcomes and patient survival. Natural molecules and metabolites from plants, such as Tillandsia usneoides, reduce tumor growth by modulating glucose metabolism and
[...] Read more.
Colorectal cancer (CRC) is a prevalent and deadly tumor worldwide. Understanding the molecular mechanisms underlying CRC development will improve treatment outcomes and patient survival. Natural molecules and metabolites from plants, such as Tillandsia usneoides, reduce tumor growth by modulating glucose metabolism and increasing reactive oxygen species (ROS). To shed light on the mechanism involved in the anti-tumor effects of T. usneoides, we evaluated the cytotoxic effect of the ethanolic extract of this plant on the colon cancer cell line SW480 through the activation of the peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor that plays a role on lipid metabolism and inflammation in cancer cells. To this end, we assessed the activation of PPARγ by T. usneoides extract in transactivation luciferase assays, as well as the cytotoxic effect of this extract on the SW480 cell line after knocking down PPARγ using shRNA. Our findings indicate that the T. usneoides extract exhibits cytotoxic effects on the SW480 cell line, potentially in the same way as PPARγ activator, pioglitazone, i.e., by increasing reactive oxygen species (ROS). In addition, both T. usneoides extract and pioglitazone exert lipogenic properties in the SW480 cells. Taken together, these results demonstrate that the T. usneoides extract decreases the viability of the colon cancer cell line SW480, at least in part, through the activation of PPARγ. This suggests the potential for further use of this plant in the treatment of other chronic diseases.
Full article
(This article belongs to the Special Issue Cancer Molecular Biology and Drug Discovery)
►▼
Show Figures
Figure 1
Open AccessReview
Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review
by
Maryam Rezvani
BioChem 2024, 4(3), 189-216; https://doi.org/10.3390/biochem4030010 - 29 Jul 2024
Abstract
Gastrointestinal diseases have been among the main concerns of medical and scientific societies for a long time. Several studies have emphasized the critical role of oxidative stress in the pathogenesis of the most common gastrointestinal diseases. To provide a comprehensive overview of gastrointestinal
[...] Read more.
Gastrointestinal diseases have been among the main concerns of medical and scientific societies for a long time. Several studies have emphasized the critical role of oxidative stress in the pathogenesis of the most common gastrointestinal diseases. To provide a comprehensive overview of gastrointestinal diseases caused by oxidative stress, their biological aspects, molecular mechanisms and specific pathways, the results of the most recent published articles from the online databases were studied considering both the upper and lower parts of the digestive tract. The results revealed that although the oxidative stress in each part of the digestive system manifests itself in a specific way, all these diseases arise from the imbalance between the generation of the reactive intermediates (especially reactive oxygen species) and the antioxidant defense system. Annual incidence and mortality statistics of gastrointestinal diseases worldwide emphasize the urgent need to find an effective and non-invasive treatment method to overcome these life-threatening problems. Therefore, in the next step, a variety of nanomedicurfines developed to treat these diseases and their effect mechanisms were investigated precisely. Furthermore, the most important nanomedicines responsive to endogenous and exogenous stimuli were evaluated in detail. This review could pave the way to open a new horizon in effectively treating gastrointestinal diseases.
Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
►▼
Show Figures
Figure 1
Open AccessArticle
Evaluation of Antioxidant, Antibacterial and Enzyme-Inhibitory Properties of Dittany and Thyme Extracts and Their Application in Hydrogel Preparation
by
Stamatia Spyrou, Myrto G. Bellou, Angelos Papanikolaou, Konstantina Nakou, Vasiliki G. Kontogianni, Alexandra V. Chatzikonstantinou and Haralambos Stamatis
BioChem 2024, 4(3), 166-188; https://doi.org/10.3390/biochem4030009 - 10 Jul 2024
Cited by 1
Abstract
In the present work, methanolic extracts from thyme and dittany plants were prepared and characterized in terms of their polyphenolic content through analytical and spectrophotometric techniques. Rosmarinic acid, thymol and carvacrol were found to be the main components of the extracts, which were
[...] Read more.
In the present work, methanolic extracts from thyme and dittany plants were prepared and characterized in terms of their polyphenolic content through analytical and spectrophotometric techniques. Rosmarinic acid, thymol and carvacrol were found to be the main components of the extracts, which were further biologically assessed for their antioxidant, anti-tyrosinase, anti-lipase and antibacterial activity against Gram-negative and Gram-positive bacteria. As found, thyme extracts exhibited superior antioxidant activity (SC50 at 33.9 μg mL−1), while dittany extracts inhibited the microbial growth to a great extent against Bacillus subtilis strain (MIC at 0.5 mg mL−1) and E. coli strain (MIC at 2 mg mL−1). Furthermore, the thyme extract was proven to strongly inhibit the activity of lipase from Candida rugosa (IC50 at 63.9 μg mL−1), comparable to the standard inhibitor orlistat, while its inhibitory effect against mushroom tyrosinase was weak. On the other hand, the dittany extract presented an inhibitory effect against the tested lipase (IC50 over 500 μg mL−1) and an activation effect against tyrosinase (at concentrations > 500 μg mL−1). Additionally, molecular docking studies of the main compounds of the extracts showed that rosmarinic acid plays a crucial role on the inhibitory activity of the extracts against lipase, while thymol has a stronger effect on inhibiting tyrosinase. Furthermore, both extracts were employed in the preparation of gelatin-deep eutectic solvent (DES) hydrogels that were further studied for their antioxidant and antibacterial activity. The results showed that the incorporation of the extracts offered antibacterial properties to the biopolymer-based hydrogels and enhanced the antioxidant activity of gelatin up to 85%.
Full article
(This article belongs to the Topic Biological Activity of Plant Extracts)
►▼
Show Figures
Figure 1
Open AccessArticle
Proteomic Blueprint of Atlantic Cod (Gadus morhua) Otoliths Revealing Environmental Stress Insights through Label-Free Quantitative Shotgun Proteomics
by
Trevena N. Youssef, Sherri L. Christian, Rick Rideout, Aaron Adamack, Pierre Thibault, Eric Bonneil, Travis D. Fridgen and Joseph Banoub
BioChem 2024, 4(2), 144-165; https://doi.org/10.3390/biochem4020008 - 19 Jun 2024
Abstract
Otoliths of the fish’s inner ear serve as a natural chronological recorder because of their continuous formation marked by daily, monthly, and annual increments. Despite their importance, the comprehensive protein content of otoliths remains not fully identified. Using the label-free shotgun proteomics method
[...] Read more.
Otoliths of the fish’s inner ear serve as a natural chronological recorder because of their continuous formation marked by daily, monthly, and annual increments. Despite their importance, the comprehensive protein content of otoliths remains not fully identified. Using the label-free shotgun proteomics method with one-dimensional liquid chromatography coupled to electrospray ionization-orbitrap tandem mass spectrometry, we quantified a broad range of proteins, with individual otoliths containing between 1341 and 1839 proteins. The identified proteins could potentially serve as a blueprint for fish growth from embryo to adult. We quantified eleven heat-shock proteins (HSPs) in both sexes and several proteins impacted by endocrine disruptors, indicating the otolith’s capacity to reflect environmental stress, potentially linked to climate change effects and altering of hormonal and neuroendocrine functions. Our bioinformatic ontology analysis confirmed the presence of proteins critical for various biological processes, including structural and enzymatic proteins. Protein–protein interaction (PPI) mapping also identified key interactions between the identified proteins. These findings significantly advance our understanding of otolith proteomics, offering a solid foundation for future work. Most of the identified proteins deposited daily and influenced by the environment were not implicated in the biomineralization of otolith, raising the potential for the otolith proteome to recreate details of fish life history at previously unrealized levels.
Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
►▼
Show Figures
Graphical abstract
Open AccessReview
Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention
by
Alhaji H. Janneh
BioChem 2024, 4(2), 126-143; https://doi.org/10.3390/biochem4020007 - 6 Jun 2024
Abstract
►▼
Show Figures
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral
[...] Read more.
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Full article
Figure 1
Open AccessCommunication
Novel Tetrazolium-Based Colorimetric Assay for Helicase nsp13 in SARS-CoV-2
by
Triet M. Pham, Morgan G. Howard, Shane M. Carey, Lindsey R. Baker and Edward L. D’Antonio
BioChem 2024, 4(2), 115-125; https://doi.org/10.3390/biochem4020006 - 15 May 2024
Abstract
►▼
Show Figures
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a human pathogenic virus that encodes for a helicase (SC2Hel) that is essential for viral replication. SC2Hel has the ability to unravel dsRNA or dsDNA in an NTP-dependent manner from the 5′
[...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a human pathogenic virus that encodes for a helicase (SC2Hel) that is essential for viral replication. SC2Hel has the ability to unravel dsRNA or dsDNA in an NTP-dependent manner from the 5′ to 3′ directionality. The standard helicase assay from studies involving SARS-CoV and SARS-CoV-2 have relied on the concept of fluorescence resonance energy transfer. Adding to the collection of helicase assays, herein, we have developed a novel tetrazolium-based colorimetric assay system for the detection of ADP that is produced via SC2Hel activity. This SC2Hel assay combines three enzyme-coupled steps involving the ADP-dependent Thermococcus litoralis glucokinase (TlGlcK), Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (LmG6PDH), and Clostridium kluyveri diaphorase (CkDIA). Iodonitrotetrazolium chloride (INT), a colorimetric tetrazolium reagent, was used in the final step of the assay that converted into INT-formazan during reduction. INT-formazan in the assay’s buffered solution at pH 7.6 exhibited an intense colorimetric response at a wavelength maximum of 505 nm. The assay exhibited excellent performance characteristics as it revealed a Z’ factor of 0.87 and it has the potential to be further adopted into high-throughput screening studies for therapeutic drug discovery research.
Full article
Figure 1
Open AccessReview
Bioinformatic Analysis of Metabolomic Data: From Raw Spectra to Biological Insight
by
Guillem Santamaria and Francisco R. Pinto
BioChem 2024, 4(2), 90-114; https://doi.org/10.3390/biochem4020005 - 16 Apr 2024
Abstract
►▼
Show Figures
Metabolites are at the end of the gene–transcript–protein–metabolism cascade. As such, metabolomics is the omics approach that offers the most direct correlation with phenotype. This allows, where genomics, transcriptomics and proteomics fail to explain a trait, metabolomics to possibly provide an answer. Complex
[...] Read more.
Metabolites are at the end of the gene–transcript–protein–metabolism cascade. As such, metabolomics is the omics approach that offers the most direct correlation with phenotype. This allows, where genomics, transcriptomics and proteomics fail to explain a trait, metabolomics to possibly provide an answer. Complex phenotypes, which are determined by the influence of multiple small-effect alleles, are an example of these situations. Consequently, the interest in metabolomics has increased exponentially in recent years. As a newer discipline, metabolomic bioinformatic analysis pipelines are not as standardized as in the other omics approaches. In this review, we synthesized the different steps that need to be carried out to obtain biological insight from annotated metabolite abundance raw data. These steps were grouped into three different modules: preprocessing, statistical analysis, and metabolic pathway enrichment. We included within each one of them the different state-of-the-art procedures and tools that can be used depending on the characteristics of the study, providing details about each method’s characteristics and the issues the reader might encounter. Finally, we introduce genome-scale metabolic modeling as a tool for obtaining pseudo-metabolomic data in situations where their acquisition is difficult, enabling the analysis of the resulting data with the modules of the described workflow.
Full article
Figure 1
Open AccessReview
New Insights into Hsp90 Structural Plasticity Revealed by cryoEM
by
Karine Minari, Vitor Hugo Balasco Serrão and Júlio César Borges
BioChem 2024, 4(2), 62-89; https://doi.org/10.3390/biochem4020004 - 4 Apr 2024
Abstract
►▼
Show Figures
Heat Shock Protein 90 (Hsp90) acts as a crucial molecular chaperone, playing an essential role in activating numerous signaling proteins. The intricate mechanism of Hsp90 involving ATPase-coupled conformational changes and interactions with cochaperone proteins has been elucidated through biochemical and structural analyses, revealing
[...] Read more.
Heat Shock Protein 90 (Hsp90) acts as a crucial molecular chaperone, playing an essential role in activating numerous signaling proteins. The intricate mechanism of Hsp90 involving ATPase-coupled conformational changes and interactions with cochaperone proteins has been elucidated through biochemical and structural analyses, revealing its activation mechanism and its diverse set of “client” proteins. Despite recent advancements, certain aspects of Hsp90’s ATPase-coupled mechanism remain contentious, and the specific nature of the alterations induced by Hsp90 in client proteins remains largely undiscovered. In this review, we explore the current understanding of Hsp90’s structure and function, drawing insights from single-particle cryoEM studies. Structural studies on Hsp90 using cryoEM have provided valuable insights into the structural dynamics and interactions of this molecular chaperone. CryoEM structures have been instrumental in understanding the ATPase-coupled conformational changes that Hsp90 undergoes during its chaperone cycle. We also highlight recent progress in elucidating the structure of the ATP-bound state of the complete dimeric chaperone. Furthermore, we delve into the roles played by the multitude of cochaperones that collaborate with Hsp90, providing a glimpse into their biochemical mechanisms through the newly obtained cryoEM structures of Hsp90 cochaperone complexes.
Full article
Figure 1
Open AccessReview
Flavonoids and Flavonoid-Based Nanoparticles for Osteoarthritis and Rheumatoid Arthritis Management
by
Hicham Wahnou, Youness Limami and Mounia Oudghiri
BioChem 2024, 4(1), 38-61; https://doi.org/10.3390/biochem4010003 - 13 Mar 2024
Cited by 7
Abstract
►▼
Show Figures
Arthritis, a global health burden comprising osteoarthritis and rheumatoid arthritis, demands advanced therapeutic approaches. In this context, flavonoids, a diverse group of naturally occurring compounds abundant in fruits, vegetables, and medicinal plants, have emerged as promising candidates for mitigating the inflammatory processes associated
[...] Read more.
Arthritis, a global health burden comprising osteoarthritis and rheumatoid arthritis, demands advanced therapeutic approaches. In this context, flavonoids, a diverse group of naturally occurring compounds abundant in fruits, vegetables, and medicinal plants, have emerged as promising candidates for mitigating the inflammatory processes associated with arthritic conditions. This review aims, first, to provide a comprehensive exploration of the potential of flavonoids, focusing on specific compounds such as quercetin, epigallocatechin-3-gallate (EGCG), apigenin, luteolin, fisetin, silibinin, kaempferol, naringenin, and myricetin. The second section of this review delves into the anti-arthritic activities of these flavonoids, drawing insights from clinical trials and scientific studies. Each flavonoid is scrutinized individually to elucidate its mechanisms of action and therapeutic efficacy in the context of both osteoarthritis and rheumatoid arthritis. The third section of this review highlights the challenges associated with harnessing flavonoids for anti-inflammatory purposes. Bioavailability limitations pose a significant hurdle, prompting the exploration of innovative strategies such as the use of nanoparticles as delivery vehicles. In response to these challenges, the fourth section focuses on the emerging field of flavonoid-based nanoparticles. This includes detailed discussions on quercetin, EGCG, fisetin, and naringenin-based nanoparticles, highlighting formulation strategies and preclinical evidence supporting their potential in arthritis management. The targeted delivery to inflammatory sites and the exploration of synergistic combinations with other compounds are also discussed as promising avenues to enhance the therapeutic impact of flavonoids. This review consolidates current knowledge on flavonoids and their nanoformulations as potential therapeutic interventions for osteoarthritis and rheumatoid arthritis. By addressing challenges and presenting future research directions, this review aims to contribute to the advancement of innovative and effective strategies for alleviating the global burden of arthritis.
Full article
Graphical abstract
Open AccessArticle
Inhibition of Lactate Dehydrogenase-A by Singlet Oxygen and Hypochlorous Acid via Cysteine Oxidation and Irreversible Conformational Changes
by
Lisa Landino, Lydia Boike and Taylor Lain
BioChem 2024, 4(1), 18-37; https://doi.org/10.3390/biochem4010002 - 2 Feb 2024
Abstract
►▼
Show Figures
Muscle lactate dehydrogenase (LDH-A) catalyzes the reduction of pyruvate to lactate, the end product of anaerobic glycolysis. LDH-A is overexpressed in many cancers prior to and even when tumors receive adequate oxygen, and lactate has multiple cellular roles. We assessed the effect of
[...] Read more.
Muscle lactate dehydrogenase (LDH-A) catalyzes the reduction of pyruvate to lactate, the end product of anaerobic glycolysis. LDH-A is overexpressed in many cancers prior to and even when tumors receive adequate oxygen, and lactate has multiple cellular roles. We assessed the effect of singlet oxygen and hypochlorous acid (HOCl) on mammalian LDH-A. Oxidants induced distinct patterns of protein crosslinks observed by SDS-PAGE under reducing conditions. LDH-A cysteines were detected using fluorescein-modified maleimide to assess their oxidation and accessibility. Singlet oxygen initially increased cysteine exposure, but higher doses resulted in their oxidation in addition to non-reducible covalent crosslinks. LDH-A cysteines were oxidized by micromolar HOCl (1–10 equivalents over enzyme) but were resistant to millimolar H2O2, chloramines and Angeli’s salt. HOCl oxidation inhibited LDH-A activity and yielded inter-chain disulfides observed by nonreducing SDS-PAGE. Disulfide reduction did not restore LDH-A activity that was lost due to HOCl oxidation. An irreversible conformational change induced by HOCl was detected by native gel electrophoresis and tryptophan fluorescence. In the absence of pyruvate, LDH-A enhanced NADH oxidation resulting in H2O2 formation. Singlet oxygen, but not HOCl, initiated this superoxide-dependent chain reaction. Once damaged by both singlet oxygen or HOCl, LDH-A had decreased NADH oxidation activity.
Full article
Figure 1
Open AccessArticle
Electrospun Polyurethane Vascular Grafts for Cerebral Revascularization: A Pilot Study on Rats
by
Evelynn Vergauwen, Michiel R. L. Tubeeckx, Annemie Houben, Sandra Van Vlierberghe, Marc Demolder, Guido R. Y. De Meyer, Patrick Pauwels and Tomas Menovsky
BioChem 2024, 4(1), 1-17; https://doi.org/10.3390/biochem4010001 - 5 Jan 2024
Abstract
►▼
Show Figures
The current standard technique for vascular grafting in cerebral revascularization surgery employs the interposition of an autologous blood vessel. Technical complications have necessitated the development of a synthetic alternative, but classical biomaterials are not suited for small caliber vascular grafting due to the
[...] Read more.
The current standard technique for vascular grafting in cerebral revascularization surgery employs the interposition of an autologous blood vessel. Technical complications have necessitated the development of a synthetic alternative, but classical biomaterials are not suited for small caliber vascular grafting due to the resulting neointimal hyperplasia and thrombosis. The electrospinning of polymers is a promising technique for the development of small vascular grafts. The in vivo performance and efficacy of electrospun polyurethane (ePU) grafts with an internal diameter of <1.5 mm have thus far not been evaluated. We developed a novel ePU graft, with a diameter of 1.25 mm, for implantation into the infrarenal aorta of rats. The patency rates of grafts after a 4-month period were equal to those reported in other studies using larger ePU graft diameters and equal or higher than in studies employing other biomaterials. We observed some loss in flow velocity throughout the grafts, which suggests a decreased elasticity of the graft compared to that of the native rat aorta. However, the grafts demonstrated good neo-endothelialization and minimal neointimal hyperplasia. Their porosity promoted cellular infiltration, as observed under tissue slide examination. Our results show that ePU vascular grafts with an internal diameter of <1.5 mm are promising candidates for vascular grafting in cerebral revascularization surgery.
Full article
Figure 1
Open AccessReview
Role of MOB4 in Cell Proliferation and Neurogenesis
by
Inês B. Santos, Juan Garrido-Maraver, Carolina Gonçalves, Bruna I. Oliveira and Álvaro A. Tavares
BioChem 2023, 3(4), 182-196; https://doi.org/10.3390/biochem3040013 - 6 Dec 2023
Abstract
Signaling pathways that integrate a large set of inputs (both extra- and intracellular) to control cell proliferation are essential during both development and adult stages to guarantee organism homeostasis. Mobs are small adaptor proteins that participate in several of these signaling pathways. Here,
[...] Read more.
Signaling pathways that integrate a large set of inputs (both extra- and intracellular) to control cell proliferation are essential during both development and adult stages to guarantee organism homeostasis. Mobs are small adaptor proteins that participate in several of these signaling pathways. Here, we review recent advances unravelling Mob4 cellular functions, a highly conserved non-catalytic protein, that plays a diversity of roles in cell proliferation, sperm cell differentiation and is simultaneously involved in synapse formation and neural development. In addition, the gene is often overexpressed in a large diversity of tumors and is linked to poor clinical outcomes. Nevertheless, Mob4 molecular functions remain poorly defined, although it integrates the core structure of STRIPAK, a kinase/phosphatase protein complex, that can act upstream of the Hippo pathway. In this review we focus on the recent findings of Mob4 functions, that have begun to clarify its critical role on cell proliferation and the development of tissues and individuals.
Full article
(This article belongs to the Special Issue Selected Papers from XXI SPB National Congress of Biochemistry 2021)
►▼
Show Figures
Figure 1
Open AccessArticle
Metabolic Effects on Mouse Embryonic Stem Cells and the Canonical Mammalian Target of Rapamycin Pathway
by
Bibiana Correia, Maria Inês Sousa and João Ramalho-Santos
BioChem 2023, 3(4), 170-181; https://doi.org/10.3390/biochem3040012 - 9 Nov 2023
Abstract
►▼
Show Figures
Diapause-like features can be extended to naïve mouse embryonic stem cells (mESCs) to induce paused pluripotency by using INK128 (mTi), a mammalian target of rapamycin (mTOR) inhibitor. As a core integrative pathway, mTOR senses diverse stimuli and translates these cues to coordinate several
[...] Read more.
Diapause-like features can be extended to naïve mouse embryonic stem cells (mESCs) to induce paused pluripotency by using INK128 (mTi), a mammalian target of rapamycin (mTOR) inhibitor. As a core integrative pathway, mTOR senses diverse stimuli and translates these cues to coordinate several processes. We have previously shown that the withdrawal of leucine and arginine from the culture medium of naïve mESCs can induce features of a paused-pluripotent state, including reduced cell proliferation, cell cycle arrest, and reductions in glycolytic and oxidative metabolism. However, surprisingly, although mTi did indeed provoke a paused-like state, this was distinct from and less pronounced than what resulted from leucine and arginine removal, and, according to our results, these features did not seem to necessarily be mTOR-driven. Therefore, this possibility should be considered in further experiments, and mTOR inhibition when using INK128 should always be confirmed and not merely assumed when INK128 is present in the culture medium.
Full article
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antioxidants, BioChem, Biomolecules, Cells, IJMS, Nutrients, Pharmaceutics, Foods
Bioactive Compounds with Application Potentials in Nutraceuticals and Nutricosmetics: Focus on Mechanism of Action and Application Science
Topic Editors: Caili Fu, Hyun-Gyun Yuk, Pujie Shi, Tiantian Lin, Lin Chen, Xin Yang, Rong FanDeadline: 31 December 2024
Topic in
BioChem, Biomolecules, CIMB, Molecules, Pharmaceutics, Sci. Pharm.
Design, Synthesis and Biological Evaluation of Novel Small Molecules as Multi-target Enzyme Inhibitors
Topic Editors: Davide Moi, Daniele Passarella, Andrea CitarellaDeadline: 31 January 2025
Topic in
IJMS, Molecules, Antioxidants, CIMB, BioChem, Foods
Biological Activities and Chemical Composition of Bee Products and Derivatives
Topic Editors: Maria da Graça Costa G. Miguel, Ofélia AnjosDeadline: 31 March 2025
Topic in
BioChem, Biomolecules, JoX, Pharmaceuticals
Phase I and Phase II Xenobiotic-Metabolizing Enzymes: Structure, Function, and Regulation
Topic Editors: Nikolaos Labrou, Anastassios C. PapageorgiouDeadline: 30 April 2025
Conferences
Special Issues
Special Issue in
BioChem
Plant-Derived Bioactive Molecules and Their Use in Sports Practice
Guest Editors: Guglielmo Duranti, Piergiorgio La RosaDeadline: 31 December 2024
Special Issue in
BioChem
Feature Papers in BioChemGuest Editors: Buyong Ma, Manuel AurelianoDeadline: 31 December 2024
Special Issue in
BioChem
Targeting Oxidative Stress and Inflammation: Emerging Mechanisms and Therapeutics
Guest Editors: Hicham Wahnou, Riad El Kebbaj, Youness LimamiDeadline: 31 March 2025
Special Issue in
BioChem
Drug Delivery: Latest Advances and Prospects
Guest Editors: Xueying Zhao, Xue MiDeadline: 30 April 2025