Lithium-Ion Battery Recycling

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Processing, Manufacturing and Recycling".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 28226

Special Issue Editors


E-Mail Website
Guest Editor
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Interests: lithium-ion battery recycling; battery manufacturing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Interests: recycling spent lithium-ion batteries; nanomaterials synthesis for energy storage and conversion; smart materials synthesis and application

Special Issue Information

Dear Colleagues,

Lithium-ion batteries are widely used in a variety of consumer and industrial applications, including smartphones, laptops, electric vehicles, and renewable energy storage systems. As the demand for these batteries continues to grow, so does the need for effective recycling methods to manage the end-of-life batteries. Lithium-ion battery recycling involves the recovery and re-use of the valuable materials contained in the batteries, reducing the need for new resources and minimizing the environmental impact of discarded batteries. This Special Issue invites researchers to contribute original research/review/perspective articles on the development of advanced technologies for lithium-ion battery recycling. Topics of interest include, but are not limited to:

  • Direct recycling (e.g., direct recycling and upcycling of cathodes, advanced separation methods, anode recycling, electrolyte recovery);
  • Hydrometallurgy;
  • Pyrometallurgy;
  • Life cycle assessment and environmental impacts of recycling;
  • New designs and materials to facilitate recycling;
  • Recycling manufacturing scraps.

Dr. Yaocai Bai
Dr. Panpan Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • recycling
  • direct recycling
  • lithium-ion batteries
  • upcycling
  • hydrometallurgy
  • cathode
  • graphite

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 2459 KiB  
Article
Extraction Strategies from Black Alloy Leachate: A Comparative Study of Solvent Extractants
by Namho Koo, Byungseon Kim, Hong-In Kim and Kyungjung Kwon
Batteries 2024, 10(7), 221; https://doi.org/10.3390/batteries10070221 - 23 Jun 2024
Cited by 5 | Viewed by 2140
Abstract
Recycling spent lithium-ion batteries (LIBs) is crucial to prevent environmental pollution and recover valuable metals. Traditional methods for recycling spent LIBs include hydrometallurgy and pyrometallurgy. Among these methods, solvent extraction can selectively extract valuable metals in spent LIB leachate. Meanwhile, spent LIBs that [...] Read more.
Recycling spent lithium-ion batteries (LIBs) is crucial to prevent environmental pollution and recover valuable metals. Traditional methods for recycling spent LIBs include hydrometallurgy and pyrometallurgy. Among these methods, solvent extraction can selectively extract valuable metals in spent LIB leachate. Meanwhile, spent LIBs that underwent pyrometallurgical treatment generate a so-called ‘black alloy’ of Ni, Co, Cu, and so on. These elements in the black alloy need to be separated by solvent extraction and there have been few studies on extracting valuable metals from black alloy. Therefore, it is necessary to examine the extraction behavior of elements in black alloy and optimize the solvent extraction process to recover valuable metals. In this paper, four types of organic extractants are used to extract metals from simulated black alloy leachate: di-(2ethylhexyl) phosphoric acid (D2EHPA), bis-(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272), 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A), and neodecanoic acid (Versatic acid 10). Based on the pH isotherms, D2EHPA would be the most reasonable for Mn extraction and impurity removal. Cyanex 272 would be more suitable for Co separation than PC88A, and Versatic acid 10 is preferred for Cu extraction over other metals. In conclusion, the optimal combination of extractants is suggested for the recovery of valuable metals. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Graphical abstract

14 pages, 1630 KiB  
Article
Research on the Human–Robot Collaborative Disassembly Line Balancing of Spent Lithium Batteries with a Human Factor Load
by Jie Jiao, Guangsheng Feng and Gang Yuan
Batteries 2024, 10(6), 196; https://doi.org/10.3390/batteries10060196 - 3 Jun 2024
Cited by 6 | Viewed by 1637
Abstract
The disassembly of spent lithium batteries is a prerequisite for efficient product recycling, the first link in remanufacturing, and its operational form has gradually changed from traditional manual disassembly to robot-assisted human–robot cooperative disassembly. Robots exhibit robust load-bearing capacity and perform stable repetitive [...] Read more.
The disassembly of spent lithium batteries is a prerequisite for efficient product recycling, the first link in remanufacturing, and its operational form has gradually changed from traditional manual disassembly to robot-assisted human–robot cooperative disassembly. Robots exhibit robust load-bearing capacity and perform stable repetitive tasks, while humans possess subjective experiences and tacit knowledge. It makes the disassembly activity more adaptable and ergonomic. However, existing human–robot collaborative disassembly studies have neglected to account for time-varying human conditions, such as safety, cognitive behavior, workload, and human pose shifts. Firstly, in order to overcome the limitations of existing research, we propose a model for balancing human–robot collaborative disassembly lines that take into consideration the load factor related to human involvement. This entails the development of a multi-objective mathematical model aimed at minimizing both the cycle time of the disassembly line and its associated costs while also aiming to reduce the integrated smoothing exponent. Secondly, we propose a modified multi-objective fruit fly optimization algorithm. The proposed algorithm combines chaos theory and the global cooperation mechanism to improve the performance of the algorithm. We add Gaussian mutation and crowding distance to efficiently solve the discrete optimization problem. Finally, we demonstrate the effectiveness and sensitivity of the improved multi-objective fruit fly optimization algorithm by solving and analyzing an example of Mercedes battery pack disassembly. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Figure 1

12 pages, 3960 KiB  
Article
Efficient Leaching of Metal Ions from Spent Li-Ion Battery Combined Electrode Coatings Using Hydroxy Acid Mixtures and Regeneration of Lithium Nickel Manganese Cobalt Oxide
by Ananda S. Amarasekara, Deping Wang and Ambar B. Shrestha
Batteries 2024, 10(6), 170; https://doi.org/10.3390/batteries10060170 - 21 May 2024
Cited by 3 | Viewed by 2304
Abstract
Extensive use of Li-ion batteries in electric vehicles, electronics, and other energy storage applications has resulted in a need to recycle valuable metals Li, Mn, Ni, and Co in these devices. In this work, an aqueous mixture of glycolic and lactic acid is [...] Read more.
Extensive use of Li-ion batteries in electric vehicles, electronics, and other energy storage applications has resulted in a need to recycle valuable metals Li, Mn, Ni, and Co in these devices. In this work, an aqueous mixture of glycolic and lactic acid is shown as an excellent leaching agent to recover these critical metals from spent Li-ion laptop batteries combined with cathode and anode coatings without adding hydrogen peroxide or other reducing agents. An aqueous acid mixture of 0.15 M in glycolic and 0.35 M in lactic acid showed the highest leaching efficiencies of 100, 100, 100, and 89% for Li, Ni, Mn, and Co, respectively, in an experiment at 120 °C for 6 h. Subsequently, the chelate solution was evaporated to give a mixed metal-hydroxy acid chelate gel. Pyrolysis of the dried chelate gel at 800 °C for 15 h could be used to burn off hydroxy acids, regenerating lithium nickel manganese cobalt oxide, and the novel method presented to avoid the precipitation of metals as hydroxide or carbonates. The Li, Ni, Mn, and Co ratio of regenerated lithium nickel manganese cobalt oxide is comparable to this metal ratio in pyrolyzed electrode coating and showed similar powder X-ray diffractograms, suggesting the suitability of α-hydroxy carboxylic acid mixtures as leaching agents and ligands in regeneration of mixed metal oxide via pyrolysis of the dried chelate gel. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Figure 1

15 pages, 3237 KiB  
Article
Sequential Recovery of Critical Metals from Leached Liquor of Processed Spent Lithium-Ion Batteries
by Ayorinde Emmanuel Ajiboye and Trevor L. Dzwiniel
Batteries 2023, 9(11), 549; https://doi.org/10.3390/batteries9110549 - 9 Nov 2023
Cited by 3 | Viewed by 3409
Abstract
The processing and extraction of critical metals from black mass is important to battery recycling. Separation and recovery of critical metals (Co, Ni, Li, and Mn) from other metal impurities must yield purified metal salts, while avoiding substantial losses of critical metals. Solvent [...] Read more.
The processing and extraction of critical metals from black mass is important to battery recycling. Separation and recovery of critical metals (Co, Ni, Li, and Mn) from other metal impurities must yield purified metal salts, while avoiding substantial losses of critical metals. Solvent extraction in batch experiments were conducted using mixed metal sulphates obtained from the leach liquor obtained from spent and shredded lithium-ion batteries. Selective extraction of Mn2+, Fe3+, Al3+ and Cu2+ from simulated and real leached mixed metals solution was carried out using di-2-ethylhexylphophoric acid (D2EPHA) and Cyanex-272 at varying pH. Further experiments with the preferred extractant (D2EPHA) were performed under different conditions: changing the concentration of extractant, organic to aqueous ratio, and varying the diluents. At optimum conditions (40% v/v D2EPHA in kerosene, pH 2.5, O:A = 1:1, 25 °C, and 20 min), 85% Mn2+, 98% Al3+, 100% Fe3+, and 43% Cu2+ were extracted with losses of only trace amounts (<5.0%) of Co2+, Ni2+, and Li+. The order of extraction efficiency for the diluents was found to be kerosene > Exxal-10 >>> dichloromethane (CH2Cl2) > toluene. Four stages of stripping of metals loaded on D2EPHA were performed as co-extracted metal impurities were selectively stripped, and a purified MnSO4 solution was produced. Spent extractant was regenerated after Fe3+ and Al3+ were completely stripped using 1.0 M oxalic acid (C2H2O4). Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 2480 KiB  
Review
High-Volume Battery Recycling: Technical Review of Challenges and Future Directions
by Sheikh Rehman, Maher Al-Greer, Adam S. Burn, Michael Short and Xinjun Cui
Batteries 2025, 11(3), 94; https://doi.org/10.3390/batteries11030094 - 28 Feb 2025
Viewed by 2505
Abstract
The growing demand for lithium-ion batteries (LIBs), driven by their use in portable electronics and electric vehicles (EVs), has led to an increasing volume of spent batteries. Effective end-of-life (EoL) management is crucial to mitigate environmental risks and prevent depletion of valuable raw [...] Read more.
The growing demand for lithium-ion batteries (LIBs), driven by their use in portable electronics and electric vehicles (EVs), has led to an increasing volume of spent batteries. Effective end-of-life (EoL) management is crucial to mitigate environmental risks and prevent depletion of valuable raw materials like lithium (Li), cobalt (Co), nickel (Ni), and manganese (Mn). Sustainable, high-volume recycling and material recovery are key to establishing a circular economy in the battery industry. This paper investigates challenges and proposes innovative solutions for high-volume LIB recycling, focusing on automation for large-scale recycling. Key issues include managing variations in battery design, chemistry, and topology, as well as the availability of sustainable raw materials and low-carbon energy sources for the recycling process. The paper presents a comparative study of emerging recycling techniques, including EV battery sorting, dismantling, discharge, and material recovery. With the expected growth in battery volume by 2030 (1.4 million per year by 2040), automation will be essential for efficient waste processing. Understanding the underlying processes in battery recycling is crucial for enabling safe and effective recycling methods. Finally, the paper emphasizes the importance of sustainable LIB recycling in supporting the circular economy. Our proposals aim to overcome these challenges by advancing automation and improving material recovery techniques. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Figure 1

11 pages, 2117 KiB  
Review
Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review
by Lu Yu, Yaocai Bai and Ilias Belharouak
Batteries 2024, 10(10), 337; https://doi.org/10.3390/batteries10100337 - 24 Sep 2024
Cited by 4 | Viewed by 5638
Abstract
With the rising demand for lithium-ion batteries (LIBs), it is crucial to develop recycling methods that minimize environmental impacts and ensure resource sustainability. The focus of this short review is on the electrochemical techniques used in LIB recycling, particularly electrochemical leaching and electrodeposition. [...] Read more.
With the rising demand for lithium-ion batteries (LIBs), it is crucial to develop recycling methods that minimize environmental impacts and ensure resource sustainability. The focus of this short review is on the electrochemical techniques used in LIB recycling, particularly electrochemical leaching and electrodeposition. Our summary covers the latest research, highlighting the principles, progress, and challenges tied to these methods. By examining the current state of electrochemical recovery, this review intends to provide guidance for future advancements and enhance LIB recycling efficiency. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Figure 1

20 pages, 3351 KiB  
Review
Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation
by Anna Pražanová, Zbyněk Plachý, Jan Kočí, Michael Fridrich and Vaclav Knap
Batteries 2024, 10(3), 81; https://doi.org/10.3390/batteries10030081 - 28 Feb 2024
Cited by 10 | Viewed by 8668
Abstract
The significant deployment of lithium-ion batteries (LIBs) within a wide application field covering small consumer electronics, light and heavy means of transport, such as e-bikes, e-scooters, and electric vehicles (EVs), or energy storage stationary systems will inevitably lead to generating notable amounts of [...] Read more.
The significant deployment of lithium-ion batteries (LIBs) within a wide application field covering small consumer electronics, light and heavy means of transport, such as e-bikes, e-scooters, and electric vehicles (EVs), or energy storage stationary systems will inevitably lead to generating notable amounts of spent batteries in the coming years. Considering the environmental perspective, material resource sustainability, and terms of the circular economy, recycling represents a highly prospective strategy for LIB end-of-life (EOL) management. In contrast with traditional, large-scale, implemented recycling methods, such as pyrometallurgy or hydrometallurgy, direct recycling technology constitutes a promising solution for LIB EOL treatment with outstanding environmental benefits, including reduction of energy consumption and emission footprint, and weighty economic viability. This work comprehensively assesses the limitations and challenges of state-of-the-art, implemented direct recycling methods for spent LIB cathode and anode material treatment. The introduced approaches include solid-state sintering, electrochemical relithiation in organic and aqueous electrolytes, and ionothermal, solution, and eutectic relithiation methods. Since most direct recycling techniques are still being developed and implemented primarily on a laboratory scale, this review identifies and discusses potential areas for optimization to facilitate forthcoming large-scale industrial implementation. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Graphical abstract

Back to TopTop