Development, Application, and Characterization of New Electrode Materials for Advanced Batteries

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Mechanisms and Fundamental Electrochemistry Aspects".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 5987

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Chemistry, University of Bologna, Bologna, Italy
Interests: electrodes for energy; cathode and anode materials for advanced batteries; characterization of materials and electrodes by core level spectroscopies; metal hexacyanoferrates
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Elettra-Sincrotrone Trieste, Strada Statale 14 km, km 163.5 in AREA Science Park, 34149 Trieste, Italy
Interests: structural characterization of advanced materials for energy storage; structural characterization of matter under extreme pressure and temperature conditions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The purpose of this Special Issue is to provide an overview of new electrode materials for advanced batteries, by taking into account both developments and applications. Synthesis strategies and applications for different chemistries including sodium ion and multivalent technologies are welcome.

This Special Issue also provides responses to scientific questions by adopting the most suitable technique for battery characterization using the peculiar characteristics of X-rays. Both conventional laboratory-based methods and large-scale facilities such as synchrotrons will be covered. The selectivity characteristic of the X-ray range—in both soft and hard domains—permits us to check, for instance, the electronic structure of selected atomic species; the local and the average structure of the electrode materials can be explored by using absorption techniques. Scattering of the X-rays is widely used to give details on the crystal structure modification upon cycling in operando modality, for instance, in layered NMC and LMFP cathodes. X-ray microscopy is also used to explore the surface conditions and inhomogeneities of the metal oxidation state in aged electrodes.

Researchers working in these fields are strongly encouraged to submit a contribution.

  • LIBs, SIBs, multivalent chemistries;
  • Synthesis and characterization;
  • Electrode/electrolyte interface;
  • Electrode intercalation mechanism and secondary reactions;
  • X-ray diffraction, SAXS, WAXS;
  • EXAFS, XANES, X-Ray Microscopy;
  • Operando and ex situ experiments;
  • Photoelectron Spectroscopy.

Dr. Marco Giorgetti
Dr. Giuliana Aquilanti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrode mechanism
  • electronic and structural modifications
  • interface and interphase analysis
  • SEI
  • CEI
  • degradation mechanism
  • oxidation state
  • Jahn–Teller effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 15871 KiB  
Article
Low-Cost, Sustainable Hybrid Aqueous Zinc Metal Batteries Using Ethyl Cellulose as a Binder
by Pedro Pablo Machado Pico, Stefano Colonna and Fabio Ronci
Batteries 2025, 11(5), 189; https://doi.org/10.3390/batteries11050189 - 11 May 2025
Viewed by 368
Abstract
Despite their inherently lower energy density than lithium-ion batteries (LIBs), aqueous zinc metal batteries (AZMBs) have recently attracted interest as rechargeable energy storage devices due to their low cost and high operational and environmental safety. They are composed of metallic zinc as the [...] Read more.
Despite their inherently lower energy density than lithium-ion batteries (LIBs), aqueous zinc metal batteries (AZMBs) have recently attracted interest as rechargeable energy storage devices due to their low cost and high operational and environmental safety. They are composed of metallic zinc as the anode, an aqueous zinc salt electrolyte and a cathode capable of (de)intercalating Zn2+ ions upon its (oxidation) reduction reaction. In this work, we studied a hybrid AZMB in which a dual-ion electrolyte containing both Zn2+ and Li+ ions was used in conjunction with a Li+ ion intercalation cathode, i.e., LiFePO4 (LFP), one of the most common, reliable, and cheap cathodes for LIBs. In this study, we present evidence that, thanks to its insolubility in water, ethyl cellulose (EC) can be effectively utilized as a binder for cathode membranes in AZMBs. Furthermore, its solubility in alcohol provides a significant advantage in avoiding the use of toxic solvents, contributing to a safer and more environmentally friendly approach to the formulation process. Full article
Show Figures

Graphical abstract

12 pages, 2536 KiB  
Article
Optimization of Lithium Metal Anode Performance: Investigating the Interfacial Dynamics and Reductive Mechanism of Asymmetric Sulfonylimide Salts
by Shuang Feng, Tianxiu Yin, Letao Bian, Yue Liu and Tao Cheng
Batteries 2024, 10(6), 180; https://doi.org/10.3390/batteries10060180 - 24 May 2024
Viewed by 1938
Abstract
Asymmetric lithium salts, such as lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI), have been demonstrated to surpass traditional symmetric lithium salts with improved Li+ conductivity and the capacity to generate a stable solid electrolyte interphase (SEI) while maintaining compatibility with an aluminum (Al0) current [...] Read more.
Asymmetric lithium salts, such as lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI), have been demonstrated to surpass traditional symmetric lithium salts with improved Li+ conductivity and the capacity to generate a stable solid electrolyte interphase (SEI) while maintaining compatibility with an aluminum (Al0) current collector. However, the intrinsic reductive mechanism through which LiDFTFSI influences battery performance remains unclear and under debate. Herein, detailed SEI reactions of LiDFTFSI–based electrolytes were investigated by combining density functional theory and molecular dynamics, aiming to clarify the formation process and atomic structure of the SEI. Our results show that asymmetric DFTFSI weakens the interaction between carbonate solvents and Li+, and substantially alters the solvation structure, exhibiting a well-balanced coordination capacity compared to bis(trifluoromethanesulfonyl)imide (TFSI). Nanosecond hybrid molecular dynamics simulation further reveals that preferential decomposition of LiDFTFSI produces sufficient LiF and Li2O to facilitate a robust SEI. Moreover, abundant F generated from LiDFTFSI decomposition accumulates on the Al surface and subsequently combines with Al3+ from the current collector to form AlF3, potentially inhibiting corrosion of the current collector. Overall, these findings elucidate how LiDFTFSI regulates the solvation sheath and SEI structure, advancing the development of high-performance electrolytes compatible with current collectors. Full article
Show Figures

Figure 1

15 pages, 4934 KiB  
Article
Aging Mechanism of Mn-Based Prussian Blue Cathode Material by Synchrotron 2D X-ray Fluorescence
by Mariam Maisuradze, Min Li, Ilaria Carlomagno, Mattia Gaboardi, Giuliana Aquilanti, Jasper Rikkert Plaisier and Marco Giorgetti
Batteries 2024, 10(4), 123; https://doi.org/10.3390/batteries10040123 - 5 Apr 2024
Cited by 1 | Viewed by 2126
Abstract
The aging mechanism of 10% and 30% nickel-substituted manganese hexacyanoferrate cathode material in aqueous zinc-ion batteries has been explored through the advanced synchrotron-based two-dimensional X-ray fluorescence technique. Thanks to the two-dimension modality, not only were the metal concentration dynamics throughout the entire electrodes [...] Read more.
The aging mechanism of 10% and 30% nickel-substituted manganese hexacyanoferrate cathode material in aqueous zinc-ion batteries has been explored through the advanced synchrotron-based two-dimensional X-ray fluorescence technique. Thanks to the two-dimension modality, not only were the metal concentration dynamics throughout the entire electrodes followed during the aging process, but their spatial distribution was also revealed, suggesting the route of the material transformation. The dissolution of Mn and Ni, as well as the penetration of Zn inside the framework were detected, while the Mn aggregations were found outside the hexacyanoferrate framework. Additionally, the possibility of conducting X-ray absorption spectroscopy measurements on the regions of interest made it possible to explore the chemical state of each metal, and furthermore, synchrotron-based powder X-ray diffraction demonstrated the gradual structural modification in 30% Ni-containing sample series in terms of the different phase formation. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

67 pages, 11913 KiB  
Review
MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries
by Narasimharao Kitchamsetti, Hyuksu Han and Sungwook Mhin
Batteries 2025, 11(6), 206; https://doi.org/10.3390/batteries11060206 - 23 May 2025
Viewed by 434
Abstract
Lithium–sulfur batteries (LSBs) are favorable candidates for advanced energy storage, boasting a remarkable theoretical energy density of 2600 Wh kg−1. Moreover, several challenges hinder their practical implementation, including sulfur’s intrinsic electrical insulation, the shuttle effect of lithium polysulfides (LiPSs), sluggish redox [...] Read more.
Lithium–sulfur batteries (LSBs) are favorable candidates for advanced energy storage, boasting a remarkable theoretical energy density of 2600 Wh kg−1. Moreover, several challenges hinder their practical implementation, including sulfur’s intrinsic electrical insulation, the shuttle effect of lithium polysulfides (LiPSs), sluggish redox kinetics of Li2S2/Li2S, and the uncontrolled growth of Li dendrites. These issues pose significant obstacles to the commercialization of LSBs. A viable strategy to address these challenges involves using MXene materials, 2D transition metal carbides, and nitrides (TMCs/TMNs) as hosts, functional separators, or interlayers. MXenes offer exceptional electronic conductivity, adjustable structural properties, and abundant polar functional groups, enabling strong interactions with both S cathodes and Li anodes. Despite their advantages, current MXene synthesis methods predominantly rely on acid etching, which is associated with environmental concerns, low production efficiency, and limited structural versatility, restricting their potential in LSBs. This review provides a comprehensive overview of traditional and environmentally sustainable MXene synthesis techniques, emphasizing their applications in developing S cathodes, Li anodes, and functional separators for LSBs. Additionally, it discusses the challenges and outlines future directions for advancing MXene-based solutions in LSBs technology. Full article
Show Figures

Figure 1

Back to TopTop