MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries
Abstract
1. Introduction
2. Synthesis of MXene
2.1. Traditional Preparation Routes
2.1.1. HF Etching
2.1.2. In Situ HF Etching
2.1.3. Molten Fluorine Salt Etching
2.1.4. Water-Free Etching
2.2. Green Synthesis
2.2.1. Electrochemical Etching
2.2.2. Salt-Templated Approach
2.2.3. Alkali Etching Approach
2.2.4. Lewis Acidic Molten Salt Etching
2.2.5. UV Induced Selective Etching
2.2.6. CVD
2.2.7. Thermal Reduction
2.2.8. In Situ Hydrothermal Process
2.2.9. Photo-Fenton (P.F.)
2.2.10. Physical Vacuum Distillation
3. The Characteristics of MXenes
3.1. Structural Characteristics
3.2. Electronic Characteristics
3.3. Mechanical Characteristics
4. Principle of LSBs
5. Challenges and Solutions of LSBs
5.1. Challenges of LSBs
5.2. Solutions of LSBs
5.2.1. Rational Construction of S Cathode
5.2.2. Rational Construction of Interlayer Between Cathode and Separator
5.2.3. Rational Construction of Li Anode
6. Possibility of MXenes for LSBs
6.1. Conductivity
6.2. Structural Variety
6.3. Adsorption of Soluble Polysulfides Through Chemical Interactions
6.4. Catalytic Role in Accelerating the Conversion of Soluble Polysulfides
6.5. Prevention of Li Dendrite Growth
7. Theoretical Investigations on MXene-Based LSBs
7.1. MXenes with Uniform Functionalization
7.1.1. MXenes with OH-Functionalization
7.1.2. MXenes with O/F-Functionalization
7.2. MXenes with Non-Uniform Functionalization
8. Experimental Advances of MXenes-Based LSBs
8.1. MXene-Based S Cathode
8.1.1. Direct Use of MXenes as S Host
8.1.2. Chemical Adjustment of MXenes as S Host
8.1.3. Structure Engineering of MXenes for S Host
8.1.4. Development of MXene-Based Composites as S Host
8.1.5. MXene Employed as a Conductive Binder for S Cathodes
8.2. MXene-Based Interlayer Between Cathode and Separator in LSBs
8.2.1. Separator Modified with Pristine MXene
8.2.2. Separator Enhanced with MXene-Based Composites
8.3. MXene-Based Li Metal Anode
8.3.1. Lamellar MXene-Li Anode
8.3.2. Perpendicular MXene-Li Anode
8.3.3. 3D MXene-Li Anode
8.3.4. Alteration of MXene-Based Li Anode
9. Summary and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kitchamsetti, N.; Mannem, C.K.; Chakra, C.S.; de Barros, A.L.F. A review of the exploration of nanostructured electrode materials, electrolytes, and performance in metal-ion (Li, Na, K, and Zn) hybrid capacitors. J. Energy Storage 2025, 106, 114836. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Kalubarme, R.S.; Chikate, P.R.; Park, C.J.; Ma, Y.R.; Shirage, P.M.; Devan, R.S. An investigation on the effect of Li-ion cycling on the vertically aligned brookite TiO2 nanostructure. ChemistrySelect 2019, 4, 6620–6626. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Cho, J.S. A roadmap of recent advances in MXene@MOF hybrids, its derived composites: Synthesis, properties, and their utilization as an electrode for supercapacitors, rechargeable batteries and electrocatalysis. J. Energy Storage 2024, 80, 110293. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Payyavula, S.; Cho, J.S. A review on hollow nanostructures, its derived composites: Preparation, structural control, alterations, and their utilization as an electrode for supercapacitors, rechargeable batteries and electrocatalysis. J. Energy Storage 2024, 98, 113143. [Google Scholar] [CrossRef]
- Li, Y.X.; Feng, Y.S.; Li, L.X.; Yin, X.; Cao, F.F.; Ye, H. Green synthesis and applictions of MXene for lithium-sulfur batteries. Energy Storage Mater. 2024, 67, 103257. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.; Liu, Y.; Xu, B. Status and Prospects of MXene-Based Lithium-Sulfur Batteries. Adv. Funct. Mater. 2021, 31, 2100457. [Google Scholar] [CrossRef]
- Shi, C.; Takeuchi, S.; Alexander, G.V.; Hamann, T.; O’Neill, J.; Dura, J.A.; Wachsman, E.D. High Sulfur Loading and Capacity Retention in Bilayer Garnet Sulfurized-Polyacrylonitrile/Lithium-Metal Batteries with Gel Polymer Electrolytes. Adv. Energy Mater. 2023, 13, 2301656. [Google Scholar] [CrossRef]
- Fu, A.; Wang, C.; Pei, F.; Cui, J.; Fang, X.; Zheng, N. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries. Small 2019, 15, 1804786. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, Q.; Zheng, Z.; Kaiser, M.R.; Chou, S.; Konstantinov, K.; Liu, H.; Lin, L.; Wang, J. The Dual Functions of Defect-Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for Li-S Batteries. Small 2021, 17, 2103535. [Google Scholar] [CrossRef]
- Ma, H.; Yu, Z.; Li, H.; Guo, D.; Zhou, Z.; Jin, H.; Wu, L.; Chen, X.; Wang, S. Tandem Carbon Hollow Spheres with Tailored Inner Structure as Sulfur Immobilization for Superior Lithium-Sulfur Batteries. Adv. Funct. Mater. 2024, 34, 2310301. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Wang, R.; He, Q.; Liu, W.; Hu, C.; Zhang, H.; Hui, J.; Huo, F. Boron-Doped Dinickel Phosphide to Enhance Polysulfide Conversion and Suppress Shuttling in Lithium-Sulfur Batteries. ACS Nano 2024, 18, 17774–17785. [Google Scholar] [CrossRef]
- Zuo, X.; Zhen, M.; Liu, D.; Fu, L.; Qiu, Y.; Liu, H.; Zhang, Y. Hollow and Porous N-Doped Carbon Framework as Lithium-Sulfur Battery Interlayer for Accelerating Polysulfide Redox Kinetics. Adv. Funct. Mater. 2024, 34, 2405486. [Google Scholar] [CrossRef]
- Cheng, R.; Xian, X.; Manasa, P.; Liu, J.; Xia, Y.; Guan, Y.; Wei, S.; Li, Z.; Li, B.; Xu, F.; et al. Carbon Coated Metal-Based Composite Electrode Materials for Lithium Sulfur Batteries: A Review. Chem. Rec. 2022, 22, e202200168. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Cho, J.S. A roadmap of MOFs derived porous carbon, oxides, chalcogenides, and phosphides of metals: Synthesis, properties, parameter modulation and their utilization as an electrode for Li/Na/K-ion batteries. J. Energy Storage 2024, 84, 110947. [Google Scholar] [CrossRef]
- Zuo, X.; Wang, L.; Zhen, M.; You, T.; Liu, D.; Zhang, Y. Multifunctional TiN-MXene-Co@CNTs Networks as Sulfur/Lithium Host for High-Areal-Capacity Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2024, 136, e202408026. [Google Scholar] [CrossRef]
- Li, Z.; Liang, G.; Wang, T.; Liu, J.; Cheng, C.; Ao, G.; Guan, Z.; Tao, T.; Zhu, J. Sulfur nanosheets deposited on reduced graphene oxide enable excellent cycling life for lithium-sulfur battery. Carbon 2024, 229, 119512. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Hu, X.; Li, Y.; Du, H.; Wang, K.; Du, Z.; Gong, X.; Ai, W.; Huang, W. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022, 94, 106883. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; de Barros, A.L.F. Recent advances in MXenes based composites as photocatalysts: Synthesis, properties and photocatalytic removal of organic contaminants from wastewater. ChemCatChem 2023, 15, e202300690. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Kim, D. A facile method for synthesizing MOF derived ZnCo2O4 particles on MXene nanosheets as a novel anode material for high performance hybrid supercapacitors. Electrochim. Acta 2023, 441, 141824. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Iqbal, M.; Ye, Z.; Xie, Z.; Mahmood, A.; Mahmood, N.; Zhang, H. Recent progress in emerging novel MXenes based materials and their fascinating sensing applications. Small 2023, 19, 2206147. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Meshkian, R.; Näslund, L.; Halim, J.; Lu, J.; Barsoum, M.W.; Rosen, J. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 2015, 108, 147–150. [Google Scholar] [CrossRef]
- Zhao, S.; Meng, X.; Zhu, K.; Du, F.; Chen, G.; Wei, Y.; Gogotsi, Y.; Gao, Y. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 2017, 8, 42–48. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Zhou, X.; Chen, F.; Gao, G.; Wang, S.; Shen, C.; Chen, T.; Zhi, C.; Eklund, P.; et al. Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano 2017, 11, 3841–3850. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Näslund, L.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; et al. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem. Mater. 2014, 26, 2374–2381. [Google Scholar] [CrossRef]
- Feng, A.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 2017, 114, 161–166. [Google Scholar] [CrossRef]
- Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P.L.; Zhao, M.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. [Google Scholar] [CrossRef]
- Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M.W. 2D Ti3C2Tz MXene Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents. Chem 2020, 6, 616–630. [Google Scholar] [CrossRef]
- Shen, M.; Jiang, W.; Liang, K.; Zhao, S.; Tang, R.; Zhang, L.; Wang, J.Q. One-Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angew. Chem. Int. Ed. 2021, 133, 27219–27224. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, H.; Jin, H.; Wu, M.; Fang, Y.; Sun, J.; Hu, Z.; Li, T.; Wu, J.; Huang, L.; et al. Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano 2017, 11, 2180–2186. [Google Scholar] [CrossRef]
- Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P.; Eklund, P.; et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 2023, 379, 1130–1135. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, C.; Filatov, A.S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; Liu, C.; Klie, R.F.; Talapin, D.V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247. [Google Scholar] [CrossRef]
- Zhao, M.; Peng, H.J.; Zhang, Z.W.; Li, B.Q.; Chen, X.; Xie, J.; Chen, X.; Wei, J.Y.; Zhang, Q.; Huang, J.Q. Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angew. Chem. Int. Ed. 2019, 58, 3779–3783. [Google Scholar] [CrossRef]
- Anasori, B.; Naguib, M.; Editors, G. Two-dimensional MXenes. MRS Bull. 2023, 48, 238–244. [Google Scholar] [CrossRef]
- Sun, W.; Shah, S.A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M.J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem. Int. Ed. 2018, 130, 15717–15721. [Google Scholar] [CrossRef]
- Kumar, S. Fluorine-Free MXenes: Recent Advances, Synthesis Strategies, and Mechanisms. Small 2024, 20, 2308225. [Google Scholar] [CrossRef]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew.Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef]
- Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew.Chem. Int. Ed. 2016, 128, 14789–14794. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, Z.; Pan, Y.; Dai, R.; Wu, Y.; Zhuang, Z.; Wang, D.; Peng, Q.; Chen, C.; Li, Y. Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Adv. Mater. 2019, 31, 1800426. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.Å.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef]
- Mei, J.; Ayoko, G.A.; Hu, C.; Bell, J.M.; Sun, Z. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 2020, 25, e00156. [Google Scholar] [CrossRef]
- Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.L.; Cheng, H.M.; Ren, W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141. [Google Scholar] [CrossRef]
- Geng, D.; Zhao, X.; Chen, Z.; Sun, W.; Fu, W.; Chen, J.; Liu, W.; Zhou, W.; Loh, K.P. Direct Synthesis of Large-Area 2D Mo2C on In Situ Grown Graphene. Adv. Mater. 2017, 29, 1700072. [Google Scholar] [CrossRef]
- Mei, J.; Ayoko, G.A.; Hu, C.; Sun, Z. Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 2020, 395, 125111. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Kim, D. High performance hybrid supercapacitor based on hierarchical MOF derived CoFe2O4 and NiMn2O4 composite for efficient energy storage. J. Alloys Compd. 2023, 959, 170483. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Samtham, M.; Singh, D.; Choudhary, E.; Rondiya, S.R.; Ma, Y.R.; Cross, R.W.; Dzade, N.Y.; Devan, R.S. Hierarchical 2D MnO2@1D mesoporous NiTiO3 core-shell hybrid structures for high-performance supercapattery electrodes: Theoretical and experimental investigations. J. Electroanal. Chem. 2023, 936, 117359. [Google Scholar] [CrossRef]
- Park, J.; Jo, S.; Kitchamsetti, N.; Zaman, S.; Kim, D. The development of NiCo2O4/PVP/PANI heterogeneous nanocomposites as an advanced battery-type electrode material for high-performing supercapacitor application. J. Alloys Compd. 2022, 926, 166815. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, C.; Shou, H.; Zhang, P.; Wan, P.; Guo, X.; Yu, Z.; Wang, W.; Chen, S.; Chu, W.; et al. In Situ Architecting Endogenous Heterojunction of MoS2 Coupling with Mo2CTx MXenes for Optimized Li+ Storage. Adv. Mater. 2022, 34, 2108809. [Google Scholar] [CrossRef]
- Liang, L.; Niu, L.; Wu, T.; Zhou, D.; Xiao, Z. Fluorine-Free Fabrication of MXene via Photo-Fenton Approach for Advanced Lithium-Sulfur Batteries. ACS Nano 2022, 16, 7971–7981. [Google Scholar] [CrossRef]
- Lin, J.; Tian, W.; Guan, Z.; Zhang, H.; Duan, X.; Wang, H.; Sun, H.; Fang, Y.; Huang, Y.; Wang, S. Functional Carbon Nitride Materials in Photo-Fenton-Like Catalysis for Environmental Remediation. Adv. Funct. Mater. 2022, 32, 2201743. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Chakra, C.S.; de Barros, A.L.F.; Kim, D. Development of MOF Based Recyclable Photocatalyst for the Removal of Different Organic Dye Pollutants. Nanomaterials 2023, 13, 336. [Google Scholar] [CrossRef]
- Chavan, R.; Bhat, N.; Parit, S.; Narasimharao, K.; Devan, R.S.; Patil, R.B.; Karade, V.C.; Pawar, N.V.; Kim, J.H.; Jadhav, J.P.; et al. Development of magnetically recyclable nanocatalyst for enhanced fenton and photo-Fenton degradation of MB and Cr (VI) photo-reduction. Mater. Chem. Phys. 2023, 293, 126964. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Narsimulu, D.; Chinthakuntla, A.; Chakra, C.S.; de Barros, A.L.F. Bimetallic MOF derived ZnCo2O4 nanocages as a novel class of high performance photocatalyst for the removal of organic pollutants. Inorg. Chem. Commun. 2022, 144, 109946. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Man, Q.; Shen, H.; Liu, C.; Xiong, S.; Feng, J. Fluorine-and acid-free strategy toward scalable fabrication of two-dimensional MXenes for sodium-ion batteries. Nano Lett. 2023, 23, 5217–5226. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, L.X.; Wen, A.Y.; Cao, F.F.; Ye, H. A Janus MXene/MOF separator for the all-in-one enhancement of lithium-sulfur batteries. Energy Storage Mater. 2023, 55, 652–659. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Xu, R. New materials in hydrothermal synthesis. Acc. Chem. Res. 2001, 34, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef]
- Ma, G.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P.L.; Simon, P.; Lin, Z. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 2021, 12, 5085. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Qin, G.; Luo, K.; Lu, J.; Li, Y.; Liang, G.; Huang, Z.; Zhou, J.; Hultman, L.; et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021, 15, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Baek, K.W.; Kitchamsetti, N.; Kim, H.W.; Cho, J.S. Prussian blue analogue-derived porous nanocages with hollow (Co,Fe)O nanoparticles as anodes for lithium ion batteries. J. Mater. Sci. Technol. 2025, 223, 76–90. [Google Scholar] [CrossRef]
- Yun, J.; Park, J.; Ryoo, M.; Kitchamsetti, N.; Goh, T.S.; Kim, D. Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power. Nano Energy 2023, 105, 108018. [Google Scholar] [CrossRef]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef]
- Soundiraraju, B.; George, B.K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 2017, 11, 8892–8900. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Cho, J.S.; Chakra, C.S. Prussian blue analogue derived porous hollow nanocages comprising polydopamine-derived N-doped C coated CoSe2/FeSe2 nanoparticles composited with N-doped graphitic C as an anode for high-rate Na-ion batteries. Chem. Eng. J. 2024, 495, 153353. [Google Scholar] [CrossRef]
- Lee, J.S.; Kitchamsetti, N.; Cho, J.S. Hierarchical porous nanofibers comprising N-doped graphitic C and ZIF-8 derived hollow N-doped C nanocages for long-life K-ion battery anodes. Chem. Eng. J. 2024, 487, 150465. [Google Scholar] [CrossRef]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef]
- Kitchamsetti, N. A review on recent advances in Prussian blue, its analogues, and their derived materials as electrodes for high performance supercapacitors. J. Energy Storage 2023, 73, 108958. [Google Scholar] [CrossRef]
- Kim, I.; Cho, H.; Kitchamsetti, N.; Yun, J.; Lee, J.; Park, W.; Kim, D. A Robust Triboelectric Impact Sensor with Carbon Dioxide Precursor-Based Calcium Carbonate Layer for Slap Match Application. Micromachines 2023, 14, 1778. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Cherusseri, J.; Karnan, M.; Kumar, K.S.; Kollu, P.; Sathish, M.; Thomas, J.; Jeong, S.K.; Grace, A.N. New method for the synthesis of 2D vanadium nitride (MXene) and its application as a supercapacitor electrode. ACS Omega 2020, 5, 17983–17992. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.; Kitchamsetti, N.; Jo, S.; Lee, S.; Song, J.; Park, W.; Kim, D. FeV LDH coated on sandpaper as an electrode material for high-performance flexible energy storage devices. Polymers 2023, 15, 1136. [Google Scholar] [CrossRef]
- Tran, M.H.; Malik, A.M.; Dürrschnabel, M.; Regoutz, A.; Thakur, P.; Lee, T.L.; Perera, D.; Luna, L.M.; Albe, K.; Rohrer, J.; et al. Experimental and theoretical investigation of the chemical exfoliation of Cr-based MAX phase particles. Dalton Trans. 2020, 49, 12215–12221. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Kim, D. Facile synthesis of hierarchical core–shell heterostructured ZnO/SnO2@NiCo2O4 nanorod sheet arrays on carbon cloth for high performance quasi-solid-state asymmetric supercapacitors. J. Mater. Res. Technol. 2022, 21, 590–603. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Ma, Y.; Liu, J.; Wang, P.; Luo, J.; Rui, Y.; Wu, Y. Ta4C3 Nanosheets as a Novel Therapeutic Platform for Photothermal-Driven ROS Scavenging and Immune Activation against Antibiotic-Resistant Infections in Diabetic Wounds. Small 2024, 20, 2400741. [Google Scholar] [CrossRef]
- Zaw, N.Y.W.; Jo, S.; Park, J.; Kitchamsetti, N.; Jayababu, N.; Kim, D. Clay-assisted hierarchical growth of metal-telluride nanostructures as an anode material for hybrid supercapacitors. Appl. Clay Sci. 2022, 225, 106539. [Google Scholar] [CrossRef]
- Halim, J.; Kota, S.; Lukatskaya, M.R.; Naguib, M.; Zhao, M.Q.; Moon, E.J.; Pitock, J.; Nanda, J.; May, S.J.; Gogotsi, Y.; et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Samtham, M.; Didwal, P.N.; Kumar, D.; Singh, D.; Bimli, S.; Chikate, P.R.; Basha, D.A.; Kumar, S.; Park, C.J.; et al. Theory abide experimental investigations on morphology driven enhancement of electrochemical energy storage performance for manganese titanate perovskites electrodes. J. Power Sources 2022, 538, 231525. [Google Scholar] [CrossRef]
- Peng, C.; Wei, P.; Chen, X.; Zhang, Y.; Zhu, F.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018, 44, 18886. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Didwal, P.N.; Mulani, S.R.; Patil, M.S.; Devan, R.S. Photocatalytic activity of MnTiO3 perovskite nanodiscs for the removal of organic pollutants. Heliyon 2021, 7, e07297. [Google Scholar] [CrossRef]
- Patil, M.S.; Kitchamsetti, N.; Mulani, S.R.; Rondiya, S.R.; Deshpande, N.G.; Patil, R.A.; Cross, R.W.; Dzade, N.Y.; Sharma, K.K.; Patil, P.S.; et al. Photocatalytic behavior of Ba (Sb/Ta)2O6 perovskite for reduction of organic pollutants: Experimental and DFT correlation. J. Taiwan Inst. Chem. Eng. 2021, 122, 201–209. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Chen, F.Y.; Ye, Q.; Eklund, P.; Du, S.; Huang, Q. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 2016, 55, 5008–5013. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Ma, Y.R.; Shirage, P.M.; Devan, R.S. Mesoporous perovskite of interlocked nickel titanate nanoparticles for efficient electrochemical supercapacitor electrode. J. Alloys Compd. 2020, 833, 155134. [Google Scholar] [CrossRef]
- Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L.M.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S.J.L.; Barsoum, M.W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 2014, 50, 9517–9520. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Choudhary, R.J.; Phase, D.M.; Devan, R.S. Structural correlation of a nanoparticle-embedded mesoporous CoTiO3 perovskite for an efficient electrochemical supercapacitor. RSC Adv. 2020, 10, 23446–23456. [Google Scholar] [CrossRef]
- Tran, M.H.; Schäfer, T.; Shahraei, A.; Dürrschnabel, M.; Luna, L.M.; Kramm, U.I.; Birkel, C.S. Adding a new member to the MXene family: Synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Appl. Energy Mater. 2018, 1, 3908–3914. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Chikate, P.R.; Patil, R.A.; Ma, Y.R.; Shirage, P.M.; Devan, R.S. Perforated mesoporous NiO nanostructures for an enhanced pseudocapacitive performance with ultra-high rate capability and high energy density. CrystEngComm 2019, 21, 7130–7140. [Google Scholar] [CrossRef]
- Narasimharao, K.; Ramana, G.V.; Sreedhar, D.; Vasudevarao, V. Synthesis of graphene oxide by modified hummers method and hydrothermal synthesis of graphene-NiO nano composite for supercapacitor application. J. Mater. Sci. Eng. 2016, 5, 6. [Google Scholar] [CrossRef]
- Jo, S.; Kitchamsetti, N.; Cho, H.; Kim, D. Microwave-assisted hierarchically grown flake-like NiCo layered double hydroxide nanosheets on transitioned polystyrene towards triboelectricity-driven self-charging hybrid supercapacitors. Polymers 2023, 15, 454. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Ramteke, M.S.; Rondiya, S.R.; Mulani, S.R.; Patil, M.S.; Cross, R.W.; Dzade, N.Y.; Devan, R.S. DFT and experimental investigations on the photocatalytic activities of NiO nanobelts for removal of organic pollutants. J. Alloys Compd. 2021, 855, 157337. [Google Scholar] [CrossRef]
- Han, M.; Shuck, C.E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C.M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016. [Google Scholar] [CrossRef]
- Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L.M.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional Nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 2016, 99, 660–666. [Google Scholar] [CrossRef]
- Pinto, D.; Anasori, B.; Avireddy, H.; Shuck, C.E.; Hantanasirisakul, K.; Deysher, G.; Morante, J.R.; Porzio, W.; Alshareef, H.N.; Gogotsi, Y. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides-solid solution MXenes. J. Mater. Chem. A 2020, 8, 8957–8968. [Google Scholar] [CrossRef]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef]
- Anasori, B.; Shi, C.; Moon, E.J.; Xie, Y.; Voigt, C.A.; Kent, P.R.C.; May, S.J.; Billinge, S.J.L.; Barsoum, M.W.; Gogotsi, Y. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 2016, 1, 227–234. [Google Scholar] [CrossRef]
- Meshkian, R.; Tao, Q.; Dahlqvist, M.; Lu, J.; Hultman, L.; Rosen, J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017, 125, 476–480. [Google Scholar] [CrossRef]
- Srimuk, P.; Halim, J.; Lee, J.; Tao, Q.; Rosen, J.; Presser, V. Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation. ACS Sustain. Chem. Eng. 2018, 6, 3739–3747. [Google Scholar] [CrossRef]
- Meshkian, R.; Lind, H.; Halim, J.; Ghazaly, A.E.; Thörnberg, J.; Tao, Q.; Dahlqvist, M.; Palisaitis, J.; Persson, P.O.Å.; Rosen, J. Theoretical Analysis, Synthesis, and Characterization of 2D W1.33C (MXene) with Ordered Vacancies. ACS Appl. Nano Mater. 2019, 2, 6209–6219. [Google Scholar] [CrossRef]
- Zhou, J.; Tao, Q.; Ahmed, B.; Palisaitis, J.; Persson, I.; Halim, J.; Barsoum, M.W.; Persson, P.O.Å.; Rosen, J. High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem. Mater. 2022, 34, 2098–2106. [Google Scholar] [CrossRef]
- Nemani, S.K.; Zhang, B.; Wyatt, B.C.; Hood, Z.D.; Manna, S.; Khaledialidusti, R.; Hong, W.; Sternberg, M.G.; Sankaranarayanan, S.K.R.S.; Anasori, B. High-entropy 2D carbide mxenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Wu, C.; Chen, Y.; Zhu, Q.; Cui, Y.; Wang, H.; Zhang, Y.; Chen, X.; Shang, J.; Li, B.; et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228. [Google Scholar] [CrossRef]
- Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.J.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [Google Scholar] [CrossRef]
- Dall’Agnese, Y.; Lukatskaya, M.R.; Cook, K.M.; Taberna, P.L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 48, 118–122. [Google Scholar] [CrossRef]
- Persson, I.; Halim, J.; Hansen, T.W.; Wagner, J.B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P.O.Å. How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 2020, 30, 1909005. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, W.B.; Zhou, K.; Chen, H.Y.; Yang, J.Q.; Ding, G.; Chen, X.; Zhou, Y.; Zhou, L.; Li, F.; et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 2019, 29, 1808783. [Google Scholar] [CrossRef]
- Ding, M.; Han, C.; Yuan, Y.; Xu, J.; Yang, X. Advances and promises of 2D MXenes as cocatalysts for artificial photosynthesis. Sol. RRL 2021, 5, 2100603. [Google Scholar] [CrossRef]
- Kim, H.; Alshareef, H.N. MXetronics: MXene-enabled electronic and photonic devices. ACS Mater. Lett. 2019, 2, 55–70. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef] [PubMed]
- Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. [Google Scholar] [CrossRef]
- Jing, H.; Yeo, H.; Lyu, B.; Ryou, J.; Choi, S.; Park, J.H.; Lee, B.H.; Kim, Y.H.; Lee, S. Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 2021, 15, 1388–1396. [Google Scholar] [CrossRef]
- Schultz, T.; Frey, N.C.; Hantanasirisakul, K.; Park, S.; May, S.J.; Shenoy, V.B.; Gogotsi, Y.; Koch, N. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 2019, 31, 6590–6597. [Google Scholar] [CrossRef]
- Mathis, T.S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A.C.; Hantanasirisakul, K.; Shuck, C.E.; Stach, E.A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429. [Google Scholar] [CrossRef]
- Lyu, B.; Kim, M.; Jing, H.; Kang, J.; Qian, C.; Lee, S.; Cho, J.H. Large-area MXene electrode array for flexible electronics. ACS Nano 2019, 13, 11392–11400. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Feng, W.; Lu, W.; Li, B.; Yao, H.; Zeng, K.; Ouyang, J. MXenes with tunable work functions and their application as electron-and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 2019, 7, 11160–11169. [Google Scholar] [CrossRef]
- Wu, H.; Almalki, M.; Xu, X.; Lei, Y.; Ming, F.; Mallick, A.; Roddatis, V.; Lopatin, S.; Shekhah, O.; Eddaoudi, M.; et al. MXene derived metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 20037–20042. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhou, J.; Si, C.; Sun, Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354. [Google Scholar] [CrossRef]
- Come, J.; Xie, Y.; Naguib, M.; Jesse, S.; Kalinin, S.V.; Gogotsi, Y.; Kent, P.R.C.; Balke, N. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv. Energy Mater. 2016, 6, 1502290. [Google Scholar] [CrossRef]
- Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018, 4, eaat0491. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, A.; Alhabeb, M.; Lu, H.; Zhao, S.; Loes, M.J.; Vorobeva, N.S.; Dall’Agnese, Y.; Gao, Y.; Gruverman, A.; Gogotsi, Y.; et al. Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 2020, 6, 1901382. [Google Scholar] [CrossRef]
- Ling, Z.; Ren, C.E.; Zhao, M.Q.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681. [Google Scholar] [CrossRef]
- Lee, G.S.; Yun, T.; Kim, H.; Kim, I.H.; Choi, J.; Lee, S.H.; Lee, H.J.; Hwang, H.S.; Kim, J.G.; Kim, D.W.; et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 2020, 14, 11722–11732. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Li, X.; Wang, Y.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A.P.; Jiang, L.; Cheng, Q. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161. [Google Scholar] [CrossRef]
- Wan, S.; Li, X.; Chen, Y.; Liu, N.; Du, Y.; Dou, S.; Jiang, L.; Cheng, Q. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, T.C.; Alhajji, E.; Tian, Z.; Shi, Z.X.; Zhang, Y.Z.; Alshareef, H.N. MXenes for Sulfur-Based Batteries. Adv. Energy Mater. 2023, 13, 2202860. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Wang, J.; Du, R.; Yu, C.; Xu, C.; Shi, Z. Application of transition metal compounds in cathode materials for lithium-sulfur battery. Ionics 2022, 28, 5275–5288. [Google Scholar] [CrossRef]
- Fang, R.; Zhao, S.; Sun, Z.; Wang, D.W.; Cheng, H.M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.; An, Y.; Chen, R.; Sun, N.; Wu, F.; Xu, B. A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries. Appl. Surf. Sci. 2018, 440, 770–777. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Wang, H.; Xu, B.; Hu, C.; Jin, Y.; Liu, J.B.; Yan, H. The suppression of lithium dendrite growth in lithium sulfur batteries: A review. J. Energy Storage 2017, 13, 387–400. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, W.; Lei, T.; Jiao, Y.; Huang, J.; Hu, A.; Gong, C.; Yan, C.; Wang, X.; Xiong, J. Strategies toward high-loading lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 2000082. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, X.; Zhang, S.; Hou, Y. Sulfur hosts against the shuttle effect. Small Methods 2018, 2, 1700345. [Google Scholar] [CrossRef]
- Li, C.; Xi, Z.; Guo, D.; Chen, X.; Yin, L. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986. [Google Scholar] [CrossRef]
- Fang, R.; Zhao, S.; Pei, S.; Qian, X.; Hou, P.X.; Cheng, H.M.; Liu, C.; Li, F. Toward more reliable lithium-sulfur batteries: An all-graphene cathode structure. ACS Nano 2016, 10, 8676–8682. [Google Scholar] [CrossRef]
- Li, M.; Carter, R.; Douglas, A.; Oakes, L.; Pint, C.L. Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes. ACS Nano 2017, 11, 4877–4884. [Google Scholar] [CrossRef]
- Zhao, X.; Kim, M.; Liu, Y.; Ahn, H.J.; Kim, K.W.; Cho, K.K.; Ahn, J.H. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon 2018, 128, 138–146. [Google Scholar] [CrossRef]
- Wang, M.; Xia, X.; Zhong, Y.; Wu, J.; Xu, R.; Yao, Z.; Wang, D.; Tang, W.; Wang, X.; Tu, J. Porous carbon hosts for lithium-sulfur batteries. Chem. Eur. J. 2019, 25, 3710–3725. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Ge, X.; Ma, J.; Zhang, Z.; Li, Q.; Wang, C.X.; Yin, L.W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26. [Google Scholar] [CrossRef]
- Zhang, Z.; Kong, L.L.; Liu, S.; Li, G.R.; Gao, X.P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 2017, 7, 1602543. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Luo, R.; Liu, X.M.; Huo, K.; Kim, J.K.; He, J.; Luo, Y.S. In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1804520. [Google Scholar] [CrossRef]
- Huang, X.; Tang, J.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y.X.; Zhu, X.; Gu, Q.; et al. Sandwich-like ultrathin TiS2 nanosheets confined within N,S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872. [Google Scholar] [CrossRef]
- Qiu, W.; Xiao, H.B.; Li, Y.; Lu, X.H.; Tong, Y.X. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 2019, 15, 1901285. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Hou, Y. Chemical confinement and utility of lithium polysulfides in lithium sulfur batteries. Small Methods 2020, 4, 1900001. [Google Scholar] [CrossRef]
- Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 23127–23168. [Google Scholar] [CrossRef]
- Lei, T.; Xie, Y.; Wang, X.; Miao, S.; Xiong, J.; Yan, C. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 2017, 13, 1701013. [Google Scholar] [CrossRef]
- Ahad, S.A.; Ragupathy, P.; Ryu, S.; Lee, H.W.; Kim, D.K. Unveiling the synergistic effect of polysulfide additive and MnO2 hollow spheres in evolving a stable cyclic performance in Li-S batteries. Chem. Commun. 2017, 53, 8782–8785. [Google Scholar] [CrossRef]
- Wang, H.E.; Li, X.; Qin, N.; Zhao, X.; Cheng, H.; Cao, G.; Zhang, W. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 2019, 7, 12068–12074. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; Pan, Y.Y.; Zhang, J.; Lin, Z.; Chen, Y.; Shu, X.; Qi, W. TiN synergetic with micro-/mesoporous carbon for enhanced performance lithium-sulfur batteries. Ionics 2018, 24, 2983–2993. [Google Scholar] [CrossRef]
- Li, X.X.; Ding, K.; Gao, B.; Li, Q.W.; Li, Y.Y.; Fu, J.; Zhang, X.M.; Chu, P.K.; Huo, K. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 2017, 40, 655–662. [Google Scholar] [CrossRef]
- Zhao, T.; Zhai, P.F.; Yang, Z.; Wang, J.X.; Qu, L.; Du, F.G.; Wang, J.T. Self-supporting Ti3C2Tx foam/S cathodes with high sulfur loading for high-energy-density lithium-sulfur batteries. Nanoscale 2018, 10, 22954–22962. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, K.; Yu, F.; Qi, R.; Ren, J.; Zhu, Z.Q. VO2 (p)-V2C (MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 2019, 11, 44282–44292. [Google Scholar] [CrossRef]
- Yu, M.P.; Ma, J.; Song, H.Q.; Wang, A.; Tian, F.; Wang, Y.; Qiu, H.; Wang, R.M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503. [Google Scholar] [CrossRef]
- Lim, W.G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem. Int. Ed. 2019, 58, 18746–18757. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Chen, G.H.; Liu, Z.; Zhu, X.X.; Liu, D.; Li, R.; Qu, D.; Li, J.S. Electrocatalytic Polysulfide Traps and their Conversion to long-chain Polysulfides using rGO-Pt composite as electrocatalyst to Improve the Performance of Li-S Battery. Int. J. Electrochem. Sci. 2019, 14, 11225–11236. [Google Scholar] [CrossRef]
- Liu, Y.; Kou, W.; Li, X.; Huang, C.; Shui, R.B.; He, G.H. Constructing patch-Ni-shelled Pt@Ni nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries. Small 2019, 15, 1902431. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, R.; Zheng, S.; Liao, K.X.; Shi, P.H.; Fan, J.C.; Xu, Q.J.; Min, Y.L. Long-life Li-S batteries based on enabling the immobilization and catalytic conversion of polysulfides. J. Mater. Chem. A 2019, 7, 21747–21758. [Google Scholar] [CrossRef]
- Ye, Z.Q.; Jiang, Y.; Qian, J.; Li, W.; Feng, T.; Li, L.; Wu, F.; Chen, R. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries. Nano Energy 2019, 64, 103965. [Google Scholar] [CrossRef]
- Lin, H.; Yang, L.Q.; Jiang, X.; Li, G.C.; Zhang, T.; Yao, Q.F.; Zheng, G.Y.W.; Lee, J.Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486. [Google Scholar] [CrossRef]
- Xu, Z.L.; Lin, S.H.; Onofrio, N.; Zhou, L.; Shi, F.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S.P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liang, Q.H.; Han, J.W.; Tao, Y.; Liu, D.H.; Zhang, C.; Lv, W.; Yang, Q.H. Catalyzing polysulfide conversion by gC3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3480–3489. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.N.; Shao, A.H.; Xiong, D.G.; Liu, J.W.; Lao, C.Y.; Xi, K.; Lu, S.Y.; Jiang, Q.; Yu, J.; et al. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Sci. China Mater. 2020, 63, 2443–2455. [Google Scholar] [CrossRef]
- Wang, H.Q.; Zhang, W.C.; Xu, J.Z.; Guo, Z. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, M.; Wang, X.; Zhang, Y.; Huang, C.; Zhang, Y.; Wang, Y. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 478–486. [Google Scholar] [CrossRef]
- Liu, X.Y.; Shan, Z.Q.; Zhu, K.; Du, J.Y.; Tang, Q.; Tian, J. Sulfur electrode modified by bifunctional nafion/γ-Al2O3 membrane for high performance lithium-sulfur batteries. J. Power Sources 2015, 274, 85–93. [Google Scholar] [CrossRef]
- Mo, Y.X.; Lin, J.X.; Wu, Y.J.; Yin, Z.W.; Lu, Y.Q.; Li, J.T.; Zhou, Y.; Sheng, T.; Huang, L.; Sun, S.G. Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: A conductive cathode with suppressed shuttling effect for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 4065–4073. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Z.X.; Ning, R.; Xi, S.; Tang, W.; Du, Y.H.; Liu, C.; Ren, Z.Y.; Chi, X.; Bai, M.H.; et al. Single-atom coated separator for robust lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 25147–25154. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.F.; Zheng, J.; Lv, M.Y.; Song, H.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Lin, D.C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.Y.; Lee, S.W.; Liang, Z.; Lee, H.W.; Yan, K.; Yao, H.; Wang, H.T.; Li, W.Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623. [Google Scholar] [CrossRef]
- Li, N.W.; Yin, Y.X.; Yang, C.P.; Guo, Y.G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858. [Google Scholar] [CrossRef]
- Yang, C.P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L.B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.L.; Tao, Y.; An, Y.L.; Tian, Y.; Zhang, Y.; Feng, J.; Qian, Y. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613. [Google Scholar] [CrossRef]
- Nan, J.X.; Guo, X.; Xiao, J.; Li, X.; Chen, W.H.; Wu, W.J.; Liu, H.; Wang, Y.; Wu, M.H.; Wang, G.X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085. [Google Scholar] [CrossRef]
- Zhang, C.F.; Cui, L.F.; Abdolhosseinzadeh, S.; Heier, J. Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2020, 2, 613–638. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, Q.Z.; Soomro, R.A.; He, S.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922. [Google Scholar] [CrossRef]
- Liang, X.; Rangom, Y.; Kwok, C.Y.; Pang, Q.; Nazar, L.F. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts. Adv. Mater. 2016, 29, 1603040. [Google Scholar] [CrossRef]
- Wang, D.; Li, F.; Lian, R.Q.; Xu, J.; Kan, D.X.; Liu, Y.H.; Chen, G.; Gogotsi, Y.; Wei, Y.J. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 2019, 13, 11078–11086. [Google Scholar] [CrossRef]
- Cao, Z.J.; Zhu, Q.; Wang, S.; Zhang, D.; Chen, H.; Du, Z.; Li, B.; Yang, S. Perpendicular MXene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv. Funct. Mater. 2020, 30, 1908075. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zheng, Z.J.; Feng, Y.Q.; Ye, H.; Cao, F.F.; Guo, Z.P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817. [Google Scholar] [CrossRef]
- Ren, H.; Yu, R.; Qi, J.; Zhang, L.; Jin, Q.; Wang, D. Hollow Multishelled Heterostructured Anatase/TiO2(B) with Superior Rate Capability and Cycling Performance. Adv. Mater. 2019, 31, 1805754. [Google Scholar] [CrossRef]
- Fang, R.; Chen, K.; Yin, L.C.; Sun, Z.; Li, F.; Cheng, H.M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863. [Google Scholar] [CrossRef]
- Park, S.K.; Nakhanivej, P.; Park, H.S. Two-dimensional nanomaterials as emerging pseudocapacitive materials. Korean J. Chem. Eng. 2019, 36, 1557–1564. [Google Scholar] [CrossRef]
- Ying, G.B.; Dillon, A.D.; Fafarman, A.T.; Barsoum, M.W. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Mater. Res. Lett. 2017, 5, 391–398. [Google Scholar] [CrossRef]
- Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. [Google Scholar] [CrossRef]
- Liang, X.; Garsuch, A.; Nazar, L.F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 2015, 127, 3979–3983. [Google Scholar] [CrossRef]
- Song, J.; Su, D.; Xie, X.Q.; Guo, X.; Bao, W.Z.; Shao, G.; Wang, G.X. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433. [Google Scholar] [CrossRef]
- Bao, W.Z.; Xie, X.Q.; Xu, J.; Guo, X.; Song, J.; Wu, W.J.; Su, D.; Wang, G.X. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. Eur. J. 2017, 23, 12613–12619. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Li, P.; Meng, X.; Wang, R. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 3608–3617. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zheng, S.H.; Qin, J.Q.; Zhao, X.; Shi, H.; Wang, X.; Chen, J.; Wu, Z.S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, Z.; Li, Z.; Li, P.; Wang, R. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 2019, 13, 3404–3412. [Google Scholar] [CrossRef]
- Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.Y.; Venkataramanan, N.S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Goddard, W.A., III. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Zhang, Y.; Zhuo, Z.; Neukirch, A.J.; Tretiak, S. Interlayer-decoupled Sc-based MXene with high carrier mobility and strong light-harvesting ability. J. Phys. Chem. Lett. 2018, 9, 6915–6920. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef]
- Rao, D.; Zhang, L.; Wang, Y.; Meng, Z.S.; Qian, X.; Liu, J.; Shen, X.Q.; Qiao, G.; Lu, R. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 2017, 121, 11047–11054. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; She, Z.W.; Fu, Z.H.; Zhang, R.F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786. [Google Scholar] [CrossRef]
- Liu, X.B.; Shao, X.F.; Li, F.; Zhao, M.W. Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 2018, 455, 522–526. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study. Appl. Surf. Sci. 2017, 412, 591–598. [Google Scholar] [CrossRef]
- Li, N.; Meng, Q.Q.; Zhu, X.H.; Li, Z.; Ma, J.; Huang, C.X.; Song, J.; Fan, J. Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: A DFT study. Nanoscale 2019, 11, 8485–8493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, S.; Hu, R.; Gu, J.; Cui, Y.; Li, B.; Chen, W.; Liu, C.; Shang, J.; Yang, S. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471. [Google Scholar] [CrossRef]
- Wang, H.; Lee, J.M. Recent advances in structural engineering of MXene electrocatalysts. J. Mater. Chem. A 2020, 8, 10604–10624. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, T.; Xie, X.; Jiang, W.; Li, J.; Tian, B.B.; Su, C.L. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1368–1373. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Z.; Fan, Z.; Cai, W.; Shao, Y.L.; Sheng, G.; Wang, M.; Song, L.X.; Liu, Z.F.; Zhang, Q.; et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555. [Google Scholar] [CrossRef]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, R.; Wang, A.; Guo, W.; Liu, X.J.; Luo, J. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 2018, 57, 15028–15033. [Google Scholar] [CrossRef]
- Li, B.; Zhang, D.; Liu, Y.; Yu, Y.; Li, S.; Yang, S. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy 2017, 39, 654–661. [Google Scholar] [CrossRef]
- Pang, Q.; Liang, X.; Kwok, C.Y.; Nazar, L.F. The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J. Electrochem. Soc. 2015, 162, A2567. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Peng, H.J.; Zhao, M.; Huang, J.Q. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.L.; Meng, X.P.; Wang, R. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Lin, H.; Yang, D.D.; Lou, N.; Zhu, S.G.; Li, H.Z. Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: A first principles study. Ceram. Int. 2019, 45, 1588–1594. [Google Scholar] [CrossRef]
- Sim, E.S.; Yi, G.S.; Je, M.Y.; Lee, Y.B.; Chung, Y.C. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: A density functional theory study. J. Power Sources 2017, 342, 64–69. [Google Scholar] [CrossRef]
- Sim, E.S.; Chung, Y.C. Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Appl. Surf. Sci. 2018, 435, 210–215. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, C.Y.; Yang, S.L.; Cao, F.F.; Ye, H. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries. J. Energy Chem. 2022, 66, 429–439. [Google Scholar] [CrossRef]
- Li, X.; Guan, Q.H.; Zhuang, Z.; Zhang, Y.Z.; Lin, Y.; Wang, J.; Shen, C.Y.; Lin, H.Z.; Wang, Y.; Zhan, L.; et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662. [Google Scholar] [CrossRef]
- Yao, W.; Tian, C.X.; Yang, C.; Xu, J.; Meng, Y.F.; Manke, I.; Chen, N.; Wu, Z.; Zhan, L.; Wang, Y.; et al. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 2022, 34, 2106370. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Liu, M.; Chen, Y.; Hou, B.; Zhang, N.; Chen, B.B.; Yang, N.; Chen, K.; Li, J.; An, L. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 7870–7876. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, Y.; Zhang, Y.; Li, D.C.; Huang, Z.C. Facile synthesis of sulfur@titanium carbide Mxene as high performance cathode for lithium-sulfur batteries. Nanophotonics 2020, 9, 2025–2032. [Google Scholar] [CrossRef]
- Yao, Y.; Feng, W.; Chen, M.L.; Zhong, X.W.; Wu, X.J.; Zhang, H.; Yu, Y. Boosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy. Small 2018, 14, 1802516. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhang, N.; Zhu, C.C.; Gao, H.; Zhang, X.T. Rationally designing S/Ti3C2Tx as a cathode material with an interlayer for high-rate and long-cycle lithium-sulfur batteries. Nanoscale 2018, 10, 16935–16942. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, W.L.; Pan, L.M.; Cullen, C.P.; Liu, Y.; Pakdel, A.; Long, D.H.; Yang, J.; McEvoy, N.; Duesberg, G.S.; et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502. [Google Scholar] [CrossRef]
- Tang, H.; Li, W.L.; Pan, L.M.; Tu, K.; Du, F.; Qiu, T.; Yang, J.; Cullen, C.P.; McEvoy, N.; Zhang, C.F. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 2019, 29, 1901907. [Google Scholar] [CrossRef]
- Du, Z.Z.; Chen, X.J.; Hu, W.; Chuang, C.H.; Xie, S.; Hu, A.; Yan, W.S.; Kong, X.H.; Wu, X.; Ji, H.X.; et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985. [Google Scholar] [CrossRef]
- Feng, J.; Liu, W.D.; Shi, C.; Zhang, C.Y.; Zhao, X.X.; Wang, T.; Chen, S.Q.; Li, Q.; Song, J. Enabling fast diffusion/conversion kinetics by thiourea-induced wrinkled N,S co-doped functional MXene for lithium-sulfur battery. Energy Storage Mater. 2024, 67, 103328. [Google Scholar] [CrossRef]
- Bao, W.Z.; Liu, L.; Wang, C.Y.; Choi, S.; Wang, D.; Wang, G.X. Facile synthesis of crumpled nitrogen-doped mxene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Qureshi, Y.; Shim, H.C.; Yuk, J.M.; Kim, J.H.; Lee, S.M. Intercalation-Conversion Hybrid Cathode Enabled by MXene-Driven TiO2/TiS2 Heterostructure for High-Energy-Density Li-S Battery. Small Struct. 2024, 5, 2400196. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, X.B.; Qiao, X.; Zhang, N.; Zhang, C.F.; Ma, Z.; Wang, H.Q. Lithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J. Phys. Chem. Lett. 2020, 11, 885–890. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, L.; Ma, X.; Lu, H.Q.; Li, L.; Zhang, X.T.; Wu, L. Conversion of polysulfides on core-shell CoP@C nanostructures for lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140460. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, S.; Yao, Y.; Dong, P.; Song, H. Transition Metal Compounds Family for Li-S Batteries: The DFT-Guide for Suppressing Polysulfides Shuttle. Adv. Funct. Mater. 2023, 33, 2300825. [Google Scholar] [CrossRef]
- Wen, C.Y.; Zheng, X.; Li, X.; Yuan, M.W.; Li, H.F.; Sun, G. Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries. Chem. Eng. J. 2021, 409, 128102. [Google Scholar] [CrossRef]
- Guan, H.; Feng, D.; Xu, X.Z.; Chen, Q.; Mei, Y.; Zeng, T.B.; Xie, D. Rational carbon design and confinement of leaf-like Tin trisulfide@Carbon/MXene Ti3C2Tx for enhanced conductivity and lithium storage kinetics. Adv. Compos. Hybrid Mater. 2024, 7, 112. [Google Scholar] [CrossRef]
- Li, Y.Y.; Yang, R.; Xie, J.W.; Li, J.; Huang, H.; Liang, X.Q.; Huang, D.; Lan, Z.Q.; Liu, H.Z.; Li, G.X.; et al. Potassium Ion-Assisted Self-Assembled MXene-K-CNT Composite as High-Quality Sulfur-Loaded Hosts for Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2024, 16, 39771–39783. [Google Scholar] [CrossRef]
- Lv, L.P.; Guo, C.F.; Sun, W.W.; Wang, Y. Strong Surface-Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C-Based MXene Nanosheets for Lithium-Sulfur Batteries. Small 2019, 15, 1804338. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Ming, F.W.; Su, H.; Wu, Y.Q.; Wahyudi, W.; Li, M.L.; Hedhili, M.N.; Sheng, G.; Li, L.J.; Alshareef, H.N.; et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019, 61, 478–485. [Google Scholar] [CrossRef]
- Gan, R.; Yang, N.; Dong, Q.; Fu, N.; Wu, R.; Li, C.; Liao, Q.; Li, J.; Wei, Z. Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: A high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 2020, 8, 7253–7260. [Google Scholar] [CrossRef]
- Song, J.J.; Guo, X.; Zhang, J.Q.; Chen, Y.; Zhang, C.Y.; Luo, L.; Wang, F.Y.; Wang, G.X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, N.; Yu, M.L.; Liu, J.S.; Wang, S.; Qiu, J.S. Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. J. Energy Chem. 2019, 37, 183–191. [Google Scholar] [CrossRef]
- Wang, M.Y.; Bai, Z.C.; Yang, T.; Nie, C.; Xu, X.; Wang, Y.X.; Yang, J.; Dou, S.X.; Wang, N. Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2201585. [Google Scholar] [CrossRef]
- Bao, W.Z.; Su, D.; Zhang, W.X.; Guo, X.; Wang, G.X. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 8746–8756. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, H.; Zhang, P.; Bao, Z.H.; Zheng, W.; Tian, W.B.; Zhang, W.; Zhou, M.; Sun, Z.M. Self-assembled sandwich hollow porous carbon sphere@MXene composites as superior LiS battery cathode hosts. 2D Mater. 2020, 7, 025049. [Google Scholar] [CrossRef]
- Li, T.T.; Liang, L.P.; Chen, Z.; Zhu, J.L.; Shen, P.K. Hollow Ti3C2Tx MXene@CoSe2/N-doped carbon heterostructured composites for multiphase electrocatalysis process in lithium-sulfur batteries. Chem. Eng. J. 2023, 474, 145970. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Tang, W.W.; Zhan, R.M.; Liu, H.; Chen, H.; Yang, J.; Xu, M.W. An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 2019, 6, 2894–2899. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, T.; Yang, Z.; Chen, Y.; Liu, Y.; Wang, J.X.; Zhai, P.F.; Wu, W. MXene-based Co,N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 38654–38662. [Google Scholar] [CrossRef]
- Qiu, S.Y.; Wang, C.; Jiang, Z.X.; Zhang, L.S.; Gu, L.L.; Wang, K.X.; Gao, J.; Zhu, X.D.; Wu, G. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries. Nanoscale 2020, 12, 16678–16684. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, S.M.; Huang, C.H.; Wang, X.; Cai, C.; He, G.H.; Zhang, F.X. Multi-heterostructured MXene/NiS2/Co3S4 with S-Vacancies to Promote Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2024, 16, 24502–24513. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Z.; Yang, C.; Xu, Z.; Zhang, S.; Zhang, X.; Li, Y.; Lai, J.P.; Sun, Z.H.; Yang, Y.; et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707578. [Google Scholar] [CrossRef]
- Pan, H.; Huang, X.X.; Zhang, R.; Wang, D.; Chen, Y.; Duan, X.M.; Wen, G. Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: Fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 2019, 358, 1253–1261. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Q.; Zhang, P.; Zheng, W.; Chen, J.; Zhou, A.; Tian, W.; Zhang, W.; Sun, Z.M. Self-assembled 3D MnO2 nanosheets@ delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater. 2018, 2, 705–714. [Google Scholar] [CrossRef]
- Han, D.D.; Sun, L.H.; Li, Z.; Qin, W.L.; Zhai, L.P.; Sun, Y.Y.; Tang, S.; Fu, Y. Supramolecular channels via crown ether functionalized covalent organic frameworks for boosting polysulfides conversion in Li-S batteries. Energy Storage Mater. 2024, 65, 103143. [Google Scholar] [CrossRef]
- Meng, R.; Deng, Q.; Peng, C.X.; Chen, B.J.; Liao, K.X.; Li, L.; Yang, Z.; Yang, D.L.; Zheng, L.; Zhang, C.; et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 2020, 35, 100991. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.; Miao, J.W.; Zhang, P.; Xu, B. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 2019, 11, 8442–8448. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, Q.; An, Y.; Anasori, B.; Wang, H.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy 2017, 33, 402–409. [Google Scholar] [CrossRef]
- Yu, L.Y.; Hu, L.F.; Anasori, B.; Liu, Y.T.; Zhu, Q.; Zhang, P.; Gogotsi, Y.; Xu, B. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603. [Google Scholar] [CrossRef]
- Sun, N.; Zhu, Q.; Anasori, B.; Zhang, P.; Liu, H.; Gogotsi, Y.; Xu, B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 2019, 29, 1906282. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, Q.; Guan, Z.; Zhao, Q.; Sun, N.; Xu, B. A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 2020, 13, 1621–1628. [Google Scholar] [CrossRef]
- Du, C.; Wu, J.; Yang, P.; Li, S.Y.; Xu, J.M.; Song, K.X. Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta 2019, 295, 1067–1074. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Zhong, N.; Zhou, X.; Zhang, M.J.; Huang, X.P.; Yang, X.; Meng, R.; Liang, X. Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 2020, 12, 112. [Google Scholar] [CrossRef]
- Li, N.; Xie, Y.; Peng, S.; Xiong, X.; Han, K. Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 2020, 42, 116–125. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, W.K.; Wang, L.; Wang, Z.G.; Zhao, W.; Duan, W.; Zhao, Z.; Liu, B.; Jin, J. A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 5993–5998. [Google Scholar] [CrossRef]
- Yin, L.X.; Xu, G.; Nie, P.; Dou, H.; Zhang, X.G. MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J. 2018, 352, 695–703. [Google Scholar] [CrossRef]
- Li, N.; Cao, W.; Liu, Y.; Ye, H.; Han, K. Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 128–136. [Google Scholar] [CrossRef]
- Jiang, G.; Zheng, N.; Chen, X.; Ding, G.; Li, Y.; Sun, F.; Li, Y.S. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309–1318. [Google Scholar] [CrossRef]
- Liu, P.; Qu, L.; Tian, X.; Yi, Y.; Xia, J.X.; Wang, T.; Nan, J.; Yang, P.; Wang, T.; Fang, B.; et al. Ti3C2Tx/Graphene Oxide Free-Standing Membranes as Modified Separators for Lithium-Sulfur Batteries with Enhanced Rate Performance. ACS Appl. Energy Mater. 2020, 3, 2708–2718. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, C.; Geng, C.; Wu, S.; Li, H.; Lv, W.; Tao, Y.; Chen, Z.; Zhou, G.M.; Li, J.; et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219. [Google Scholar] [CrossRef]
- Wang, J.T.; Zhai, P.F.; Zhao, T.K.; Li, M.J.; Yang, Z.; Zhang, H.; Huang, J. Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 2019, 320, 134558. [Google Scholar] [CrossRef]
- Zhan, Y.X.; Shi, P.; Zhang, X.Q.; Ding, F.; Huang, J.Q.; Jin, Z.; Xiang, R.; Liu, X.J.; Zhang, Q. The insights of lithium metal plating/stripping in porous hosts: Progress and perspectives. Energy Technol. 2021, 9, 2000700. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Li, B.; Gong, Y.; Yang, S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Li, H.; Chen, Z.; Shang, T.X.; Wu, Z.; Zhang, C.; Li, J.; Lv, W.; Tao, Y.; et al. Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithium-Sulfur Batteries. Batter. Supercaps 2020, 3, 892–899. [Google Scholar] [CrossRef]
- Chen, X.; Shang, M.; Niu, J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 2020, 20, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.D.; Zhang, C.F.J.; Lu, P.; Dong, Y.; Wen, P.C.; Wu, Z.S. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 2019, 13, 14308–14318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Hu, R.; Huang, C.Y.; Zhong, W.J.; Pan, L.M.; Feng, Y.B.; Qiu, T.; Zhang, C.F.; Yang, J. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2019, 484, 383–391. [Google Scholar] [CrossRef]
- Gu, J.; Zhu, Q.; Shi, Y.Z.; Chen, H.; Zhang, D.; Du, Z.; Yang, S. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898. [Google Scholar] [CrossRef]
- Wei, C.L.; Fei, H.F.; Tian, Y.; An, Y.L.; Guo, H.H.; Feng, J.K.; Qian, Y. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020, 26, 223–233. [Google Scholar] [CrossRef]
Feature | Traditional Route | Green Route |
---|---|---|
Raw material | Containing HF | HF-free |
Yield | Low | High |
Preparation condition | Time consuming | Mild and efficient |
By-product | HF gas | HF-free |
Surface groups | Terminations limited to -F, -O, and -OH | Terminations with affinity for S and Li |
Technique | Feature | Merits | Demerits | Application | Role | Current Density (mA g−1) | Capacity (mAh g−1) | Cycle Number | Terminations | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
HF etching | Accordion-type structure | Easy preparation process and relatively safe | Hazardous | LIBs | Anode | 200 | 146 | 200 | -F, -O, -OH | [26] |
In Situ HF etching | Few -F terminations clay type MXene with great interlayer distance | Low yield and Time taking | LSBs | Separator | 0.5 C | 687 | 100 | -F, -O, -OH, -Cl | [59] | |
Molten fluorine salt etching | Metallic and magnetic characteristics | High efficiency | High preparation temperature | - | - | - | - | - | -F, -O, -OH | [30] |
Water-free etching | Accordion-type structure with many -F terminations | High anode capacity | Long etching time and Inconvenient operation | SIBs | Anode | 100 | 160 | 700 | -F, -O, -OH | [31] |
Electrochemical etching | Large lateral size and Rich surface terminations | High safety and Low energy consuming | Low yield | SCs | - | - | - | - | -O, -OH -S, -Cl | [60] |
Salt-Templated | NSs | High efficiency | High preparation temperature | - | - | - | - | -Cl | [32] | |
Alkali etching | Accordion-like structure | High purity | Certain safety hazards | - | - | - | - | -O, -OH Al(OH)4− | [41] | |
Lewis acidic molten salts etching | Wider etching precursor range | Limited applicability | LIHCs | - | - | - | - | -O, -Cl | [43] | |
UV-induced selective etching | Graphene-like structure | Great purity and short preparation time | Advanced instruments needed | LIBs | Anode | 10 | 90 | 140 | -O | [34] |
CVD | Large lateral size and high surface quality | Controllable thickness and atom-economic preparation | High cost and high preparation temperature | Three electrode System | - | - | - | - | - | [47] |
Thermal reduction | Graphene-like structure | Short preparation time and simple preparation process | High preparation temperature and relies on S-containing MAX phase | LIBs | Anode | 2000 | 70 | 130 | -O, -OH | [35] |
In situ hydrothermal | NSs | Simple preparation and low synthesis temperature | Long preparation time | 100 | 683.9 | 1200 | - | [61] | ||
Photo-Fenton | Exceptional hydrophilicity Accordion-type structure | Short preparation time and High purity | Complex preparation activity | LSBs | Cathode | 1 C | 585 | 500 | -O, -OH | [54] |
Physical vacuum distillation | Controllable structure and SSA | Low cost and easy process | High preparation temperature | SIBs | Anode | 200 | 51.5 | 110 | -O, -Cl | [58] |
Preferred Synthesis Methods | Preferred Structure | Feature | Function | Surface Groups |
---|---|---|---|---|
HF etching, salt-templated, hydrothermal | NSs or porous structure | S cathode host | Dispersing S and confining S | -F, -O, -OH, -S, -Cl et al. |
Electrochemical etching, UV-induced selective etching | NSs | Separator | Blocking S and inhibiting dendrite | |
HF etching, salt-templated, hydrothermal | NSs or porous structure | Li anode host | Suppressing dendrite |
Materials | S Loading (mg cm−2) | S Content (%) | Initial Capacity (mAh g−1)/Current Density | Capacity Decay (%) @Cycles/Current Density | Rate Capacity (mAh g−1)/Current Density | Ref. |
---|---|---|---|---|---|---|
S@Ti3C2Tx ink | 4 | 67.1 | 1477.2/0.2 C | 0.18@100/0.2 C | 860.2/2 C | [221] |
Accordion-like layered Ti3C2/S | - | 57.6 | 1291/200 mA g−1 | 0.25@100/200 mAg−1 | 620/3.2 A g−1 | [220] |
S@MXe@PDA | 1.7 | 60 | 1439/0.2 C | 0.183@150/0.2 C | 624/6 C | [222] |
4.4 | - | 1034.1/0.2 C | 0.128@140/0.2 C | 735/1 C | ||
Delaminated-Ti2C/S | 1.0 | 70 | 1090/0.5 C | 0.05@650/0.5 C | 660/4 C | [188] |
Ti3C2Tx “clay”/S and SWCNT interlayer | 1.0–1.2 | 50 | 1458/0.1 A g−1 | 0.04@1500/0.8 A g−1 | 608/4.9 C | [223] |
3.5 | 80 | 675.2/1.5 A g−1 | 0.012@600/1.5 A g−1 | - | ||
Robust Ti3C2Tx paper/S | - | 30 | 1383/0.1 C | 0.014@1500/1 C | 1075/2 C | [225] |
V2C-Li/rGO-CNTs/S | 3 | 70 | 1140/0.1 C | 0.053@500/1 C | 400/5 C | [230] |
S@Ti3C2Tx ink | - | 50 | 1350/0.1 C | 0.048@800/0.2 C | 1004/2 C | [224] |
70 | 1244/0.1 C | 0.035@175/2 C | 1161/2 C | |||
Zn-Ti3C2Tx/S | 1.7 | 89 | 1136/0.2 C | 0.03@400/1 C | 517/6 C | [203] |
Ti3C2 nanoribbon/S and delaminated-Ti3C2 interlayer | 0.7–1 | 68 | 1062/0.2 C | 0.2516@200/0.5 C | 373/6 C | [192] |
Ti3C2Tx nanodots-Ti3C2Tx NSs/S | 1.8 | 67.6 | 1609/0.05 C | 0.057@400/2 C | - | [191] |
9.2 | - | 1827 mAh cm−3/0.05 C | 0.02@100/0.05 C | |||
13.8 | 1957 mAh cm−3/0.05 C | 0.02@100/0.05 C | ||||
Flower-like porous Ti3C2Tx/S | 4.2 | 61.5 | 1547 mAh cm−3/0.033 C | 0.366@75/0.033 C | - | [193] |
6.8 | - | 1814 mAh cm−3/0.033 C | 0.395@75/0.033 C | |||
10.5 | 2009 mAh cm−3/0.033 C | 0.294@75/0.033 C | ||||
Porous N-doped Ti3C2Tx/S | 1.4–1.6 | 64 | 1072/0.5 C | 0.033@1200/2 C | 792/3 C | [206] |
3.6 | - | 993/0.2 C | 0.062@50/0.2 C | - | ||
8.2 | 9 mAh cm−2/0.1 C | 0.722@20/0.1 C | ||||
Crumpled N-doped Ti3C2Tx/S | 1.5 | 73.85 | 1609/0.05 C | 0.026@1000/2 C | 770/2 C | [228] |
5.1 | - | 765/0.2 C | 0.046@500/0.2 C | - | ||
Ti2CTx/CNTs/S | 1.5 | 83 | 1240/0.05 C | 0.043@1200/0.5 C | - | [179] |
Ti3C2Tx/CNTs/S | 79 | 1216/0.05 C | ||||
Ti3CNTx/CNTs/S | 83 | 1263/0.05 C | ||||
Ti3C2Tx foam/S | 1.5 | 71.1 | 1226.4/0.2 C | 0.025@1000/1 C | 711.0/5 C | [153] |
Mo2C/CNTs/S | 0.8 | 87.1 | 1438/0.1 C | 0.1@250/0.1 C | 519@5 C | [236] |
1.5 | - | 1314/0.1 C | - | - | ||
3.5 | 1068/0.1 C | |||||
5.6 | 959/0.1 C | |||||
Ti3C2@Carbon Fibers/S | 4 | - | 1175.2/0.5 C | 0.042%@1000/1 C | - | [238] |
Ti3C2Tx/graphene/Li2S | 3 | 62 | 710/0.2 C | 0.133@100/0.2 C | 550/2 C | [240] |
6 | - | 590/0.2 C | - | 520/1 C | ||
9 | 545/0.2 C | 380/1 C | ||||
Ti3C2Tx@PEI-CNTs/S | 2.6 | 70.2 | 1110/0.5 C | 0.02@1500/1 C | 950/2.5 C | [237] |
Ti3C2Tx@PEI-CNTs interlayer | 5.8 | - | 1184/0.25 C | 0.286@100/0.25 C | - | |
3D Ti3C2Tx/rGO aerogel/S | 1.57 | 45 | 1270/0.1 C | 0.07@500/1 C | 977/1 C | [239] |
6 | - | 879/0.1 C | - | - | ||
Ti3C2Tx/rGO/S | 1.5 | 70.4 | 1144.2/0.5 C | 0.0774@300/0.5 C | 750/5 C | [190] |
Hollow porous carbon spheres@d-Ti3C2Tx/S | 1 | 76.5 | 1397.5/0.05 C | 0.069@500/1 C | 398.9/2 C | [243] |
Ti3C2Tx/Co, N-codoped C/S and MXene interlayer | 1.5 | - | 1340.2/0.2 C | 0.016@1000/1 C | 579.2/7 C | [246] |
5.2 | 924.7/1 C | 0.033@1000/1 C | - | |||
Ti3C2Tx@mesoporous C/S | 2 | - | 1225.8/0.5 C | 0.142@300/0.5 C | 544.3/4 C | [242] |
Ti3C2Tx/N-doped C/S | - | 80 | 1064/0.1 C | 0.04%@800/1 C | 595/2 C | [245] |
Ketjen black/S@Ti3C2Tx cathode and Ketjen black@Ti3C2Tx interlayer | 4.5 | 82 | 920/0.05 C | 0.158@100/0.2 C | 517/2 C | [260] |
5.6 | - | 1137/0.05 C 810/0.2 C | 0.25@100/0.2 C | - | ||
Covalent triazine/Ti3C2 | 1.5 | 76 | 1441/0.2 C | 0.014@1000/1 C | - | [253] |
5.6 | - | 868.1/0.2 C | 0.06@100/0.2 C | |||
VO2(p)-V2C/S | - | 72.7 | 1250/0.2 C | 0.0618@500/2 C | 585/2 C | [154] |
S@TiO2/Ti2C | 1.8–2.0 | 78.4 | 1408.6/0.2 C | 0.2036@200/2 C | 317.7/5 C | [259] |
Ti3C2Tx-1T-2H MoS2-C/S | 1 | 79.6 | 1194.7/0.1 C | 0.07@300/0.5 C | 677.2/2 C | [249] |
Ti3C2Tx-MnO2/S | 1.2 | 70 | 1140/0.05 C | 0.06@500/1 C | 615/2 C | [251] |
Ti3C2Tx/S2-4/UMC | 1 | 37.2 | 1029.7/0.1 C | 0.0405@200/0.1 | 502.3/2 C | [254] |
Ti3C2Tx-TiO2/S | - | 60 | 1417/1 C | 0.053@1000/1 C | 367/10 C | [250] |
Materials | Cathode | S Loading (mg cm−2) | S Content (%) | Initial Capacity (mAh g−1)/Current Density | Capacity Decay (%)@Cycles/Current Density | Rate Capacity (mAh g−1)/Current Density | Ref. |
---|---|---|---|---|---|---|---|
Ti3C2Tx/glass fiber | S/super P | 1.9 | 70 | 1462/0.1 A g−1 | 0.22@100/0.5 A g−1 | 802/2 A g−1 | [262] |
Ti3C2Tx | S/super P | 1.2 | 68 | 1046.9/0.2 C | 0.062@500/0.5 C | 743.7/1 C | [189] |
Ti3C2Tx/eggshell membrane | S/Ketjen black | 2.07 | 67 | 1003/0.5 C | 0.104@250/0.5 C | 948/1 C | [263] |
N-Ti3C2Tx/C | S/CNTs | 3.4 | 79 | 1332/0.1 C | 0.07@500/0.5 C | 675/2 C | [265] |
Ti3C2Tx/TiO2 | S/CMK-3 | 1.2 | 70 | 800/2 C | 0.028@1000/2 C | 663/2 C | [267] |
S/CNTs | 5.1 | 75 | 712/0.5 C | 0.035@200/0.5 C | - | ||
- | 7.3 | - | - | 0.2115@200/0.5 C | - | ||
3D Ti3C2Tx/CNTs | S/CNTs | 0.8 | 70 | 1415/0.1 C | 0.06@600/1 C | 728/2 C | [264] |
Ti3C2Tx/10% CNTs | S/CNTs | 1.2 | 70 | ≈1100/0.1 C | 0.086@200/1 C | 640/2 C | [261] |
Ti3C2Tx/Nafion | S/carbon black | 2 | 74.1 | 1234/0.2 C | 0.03@1000/1 C | 794/3 C | [268] |
Ti3C2Tx/GO | S/CNTs | 3-4 | 70.5 | 1621.5/0.1 C | 0.103@300/1 C | 640/5 C | [266] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitchamsetti, N.; Han, H.; Mhin, S. MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries. Batteries 2025, 11, 206. https://doi.org/10.3390/batteries11060206
Kitchamsetti N, Han H, Mhin S. MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries. Batteries. 2025; 11(6):206. https://doi.org/10.3390/batteries11060206
Chicago/Turabian StyleKitchamsetti, Narasimharao, Hyuksu Han, and Sungwook Mhin. 2025. "MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries" Batteries 11, no. 6: 206. https://doi.org/10.3390/batteries11060206
APA StyleKitchamsetti, N., Han, H., & Mhin, S. (2025). MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries. Batteries, 11(6), 206. https://doi.org/10.3390/batteries11060206