Advanced Studies on High-Performance Metal-Ion Capacitors: Technologies, Systems and Applications

Special Issue Editors


E-Mail Website
Guest Editor
School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
Interests: metal-ion capacitors; pre-metalation; carbon-based materials; Ni-rich cathode materials for advanced batteries

E-Mail Website
Guest Editor
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
Interests: organic functional material; electrochemical energy storage

E-Mail Website
Guest Editor
Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China
Interests: electrochemical energy storage and conversion; Li/Na/K/Zn/Mg/Al-ion batteries; supercapacitors; hybrid-ion supercapacitors; electrodes; nanomaterials; electrolytes; carbon-based materials

Special Issue Information

Dear Colleagues,

Metal-ion capacitors as newly developed hybrid electrochemical energy storage (EES) systems are composed of a battery-type electrode and supercapacitor-type electrode, coupled with the redox reaction and electric double layer behavior, which could achieve the desired peculiarities of a high energy density, large power density and long lifespan.  However, due to the incompatibleness of two different energy storage mechanisms, the electrochemical performances are unsatisfactory. Moreover, the construction of advanced metal-ion capacitors is mainly limited by key bottlenecks such as the kinetics mismatching between electrodes, unclear storage mechanism of electrodes and uncontrollable pre-metalation technology. To address these concerns, this edition discusses the technologies, systems and applications of metal-ion capacitors.

Topics of interest include but are not limited to:

  • Energy storage mechanism of metal-ion capacitors;
  • Key technologies of metal-ion capacitors;
  • Pre-metalation methods;
  • Electrolytes;
  • Advanced characterizations for metal-ion capacitors;
  • Cell structure designs.

Dr. Kangyu Zou
Dr. Tianjing Wu
Dr. Jiangmin Jiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lithium-ion capacitor
  • sodium-ion capacitor
  • potassium-ion capacitor
  • electrode materials
  • energy storage mechanism
  • pre-metalation
  • electrolytes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 5003 KiB  
Article
Construction of CoNi2S4@Ni(OH)2 Nanosheet Structures for Asymmetric Supercapacitors with Excellent Performance
by Yongli Tong, Baoqian Chi, Yu Jiang and Xiang Wu
Batteries 2025, 11(3), 83; https://doi.org/10.3390/batteries11030083 - 20 Feb 2025
Viewed by 611
Abstract
It is crucial for energy storage devices to construct electrode materials with excellent performance. However, enhancing energy density and cycling stability for supercapacitors is a significant challenge. We successfully synthesized CoNi2S4@Ni(OH)2 nanosheets on the surface of Ni foam [...] Read more.
It is crucial for energy storage devices to construct electrode materials with excellent performance. However, enhancing energy density and cycling stability for supercapacitors is a significant challenge. We successfully synthesized CoNi2S4@Ni(OH)2 nanosheets on the surface of Ni foam substrate by a two-step hydrothermal approach. The obtained products exhibit a remarkable areal capacitance of 1534 F g−1 at a current density of 1 A g−1. Moreover, even after 10,000 cycles, the specific capacitance remains 90% of its initial value, highlighting the exceptional long-term stability and durability. Furthermore, an asymmetric supercapacitor (ASC) device incorporating the CoNi2S4@Ni(OH)2 material shows remarkable electrochemical performance. It delivers an energy density of 58.5 mW h g−1 at a power density of 2700 W kg−1. The outstanding performance mainly arises from the selection of materials, the design of the structure, and the synergistic interaction between the materials. The result suggests that this material holds great potential as an energy storage material. Full article
Show Figures

Figure 1

11 pages, 2960 KiB  
Article
Honeycomb-like N-Doped Carbon Matrix-Encapsulated Co1−xS/Co(PO3)2 Heterostructures for Advanced Lithium-Ion Capacitors
by Yutao Liu, Xiaopeng Xie, Zhaojia Wu, Tao Wen, Fang Zhao, Hao He, Junfei Duan and Wen Wang
Batteries 2024, 10(10), 346; https://doi.org/10.3390/batteries10100346 - 27 Sep 2024
Viewed by 1355
Abstract
Lithium-ion capacitors (LICs) are emerging as promising hybrid energy storage devices that combine the high energy densities of lithium-ion batteries (LIBs) with high power densities of supercapacitors (SCs). Nevertheless, the development of LICs is hindered by the kinetic imbalances between battery-type anodes and [...] Read more.
Lithium-ion capacitors (LICs) are emerging as promising hybrid energy storage devices that combine the high energy densities of lithium-ion batteries (LIBs) with high power densities of supercapacitors (SCs). Nevertheless, the development of LICs is hindered by the kinetic imbalances between battery-type anodes and capacitor-type cathodes. To address this issue, honeycomb-like N-doped carbon matrices encapsulating Co1−xS/Co(PO3)2 heterostructures were prepared using a simple chemical blowing-vulcanization process followed by phosphorylation treatment (Co1−xS/Co(PO3)2@NC). The Co1−xS/Co(PO3)2@NC features a unique heterostructure engineered within carbon honeycomb structures, which efficiently promotes charge transfer at the interfaces, alleviates the volume expansion of Co-based materials, and accelerates reaction kinetics. The optimal Co1−xS/Co(PO3)2@NC composite demonstrates a stable reversible capacity of 371.8 mAh g−1 after 800 cycles at 1 A g−1, and exhibits an excellent rate performance of 242.9 mAh g−1 even at 8 A g−1, alongside enhanced pseudocapacitive behavior. The assembled Co1−xS/Co(PO3)2@NC//AC LIC delivers a high energy density of 90.47 Wh kg−1 (at 26.28 W kg−1), a high power density of 504.94 W kg−1 (at 38.31 Wh kg−1), and a remarkable cyclic stablitiy of 86.3% retention after 5000 cycles. This research is expected to provide valuable insights into the design of conversion-type electrode materials for future energy storage applications. Full article
Show Figures

Graphical abstract

16 pages, 4223 KiB  
Article
One-Step Hydrothermally Synthesized Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 Heterostructure with Enhanced Rate Performance for Hybrid Supercapacitor Applications
by Mingjun Jing, Kaige Long, Rui Liu, Xingyu Wang, Tianjing Wu, Yirong Zhu, Lijie Liu, Sheng Zhang, Yang Zhang and Cheng Liu
Batteries 2024, 10(10), 339; https://doi.org/10.3390/batteries10100339 - 24 Sep 2024
Viewed by 1207
Abstract
Transition metal phosphate is the prospective electrode material for supercapacitors (SCs). It has an open frame construction with spacious cavities and wide aisles, resulting in excellent electric storage capacity. However, the inferior rate behavior and cycling stability of transition metal phosphate materials in [...] Read more.
Transition metal phosphate is the prospective electrode material for supercapacitors (SCs). It has an open frame construction with spacious cavities and wide aisles, resulting in excellent electric storage capacity. However, the inferior rate behavior and cycling stability of transition metal phosphate materials in alkaline environments pose significant barriers to their application in SCs. Herein, Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 heterostructured materials synthesized through a one-step hydrothermal process exhibiting remarkable rate capability coupled with exceptional cycling endurance. Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 samples exhibit a micron-scale structure composed of sheet-like compositions and unique pore structure. The multistage pore structure is favorable for promoting the diffusion of protons and ions, enhancing the sample’s electrochemical storage capacity. Upon conducting electrochemical tests, it was observed that Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 composite electrode surpassed both the standalone Ni11(HPO3)8(OH)6 and Co3(HPO4)2(OH)2 electrode, achieving a remarkable specific capacity of 163 mAh g−1 with exceptional stability and efficiency at 1 A g−1. Notably, this electrode also exhibits superior rate performance, maintaining 82.5% and 71% of its original full capacity even at 50 A g−1 and 100 A g−1, respectively. Furthermore, it demonstrates superior stability in cycling, retaining a capacity of 92.7% at 10 A g−1 after 5000 cycles. Moreover, Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 and porous carbon (PC) were assembled into a hybrid supercapacitor (HSC). Electrochemical tests reveal an impressive power density of up to 36 kW kg−1 and an exceptional energy density of up to 47.4 Wh kg−1 for the HSC. Moreover, Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2//PC HSC exhibits robust capacity retention stability of 92.9% after enduring 10,000 cycles at 3 A g−1, demonstrating its remarkable durability. This work imparts viewpoints into the design of transition metal phosphate heterostructured materials. Full article
Show Figures

Graphical abstract

15 pages, 4783 KiB  
Article
Anion Intercalation/De-Intercalation Mechanism Enabling High Energy and Power Densities of Lithium-Ion Capacitors
by Yang Zhang, Junquan Lao and Ping Xiao
Batteries 2024, 10(9), 296; https://doi.org/10.3390/batteries10090296 - 23 Aug 2024
Cited by 1 | Viewed by 1575
Abstract
The growing demands for electrochemical energy storage systems is driving the exploration of novel devices, with lithium-ion capacitors (LICs) emerging as a promising strategy to achieve both high energy density and fast charge capability. However, the low capacitance of commercial activated carbon (AC) [...] Read more.
The growing demands for electrochemical energy storage systems is driving the exploration of novel devices, with lithium-ion capacitors (LICs) emerging as a promising strategy to achieve both high energy density and fast charge capability. However, the low capacitance of commercial activated carbon (AC) cathode based on anion absorption/desorption limits LIC applications. Herein, commercial graphite is proposed as the cathode to construct an innovative AC (−)//graphite (+) system. The graphite cathode functions as anion hosting, allowing reversible intercalation/de-intercalation of anions into/from its interlayers. The as-designed AC (−)//graphite (+) full cell achieves stable cycling with 90.6% capacity retention after 200 cycles at 0.1 A g−1 and a prolonged lifespan with 87.5% capacity retention after 5000 cycles at 0.5 A g−1 with the upper cut-off voltage of 5.0 V, yielding a high average Coulombic efficiency (CE) of 99.3%. Moreover, the full cell exhibits a high energy density (>200 Wh kg−1) and power density of 7.7 kW kg−1 (calculated based on active mass in both electrodes). These performances exceed most LICs based on anions absorption/desorption on the surface of AC cathodes. This work explores an effective electrode revolution with the assistance of anion intercalation/de-intercalation chemistry for developing novel LICs with high energy and power densities. Full article
Show Figures

Graphical abstract

51 pages, 24057 KiB  
Article
Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy
by Syed Shaheen Shah
Batteries 2024, 10(5), 168; https://doi.org/10.3390/batteries10050168 - 20 May 2024
Cited by 17 | Viewed by 4857
Abstract
Modern research has made the search for high-performance, sustainable, and efficient energy storage technologies a main focus, especially in light of the growing environmental and energy-demanding issues. This review paper focuses on the pivotal role of biomass-derived carbon (BDC) materials in the development [...] Read more.
Modern research has made the search for high-performance, sustainable, and efficient energy storage technologies a main focus, especially in light of the growing environmental and energy-demanding issues. This review paper focuses on the pivotal role of biomass-derived carbon (BDC) materials in the development of high-performance metal-ion hybrid supercapacitors (MIHSCs), specifically targeting sodium (Na)-, potassium (K)-, aluminium (Al)-, and zinc (Zn)-ion-based systems. Due to their widespread availability, renewable nature, and exceptional physicochemical properties, BDC materials are ideal for supercapacitor electrodes, which perfectly balance environmental sustainability and technological advancement. This paper delves into the synthesis, functionalization, and structural engineering of advanced biomass-based carbon materials, highlighting the strategies to enhance their electrochemical performance. It elaborates on the unique characteristics of these carbons, such as high specific surface area, tuneable porosity, and heteroatom doping, which are pivotal in achieving superior capacitance, energy density, and cycling stability in Na-, K-, Al-, and Zn-ion hybrid supercapacitors. Furthermore, the compatibility of BDCs with metal-ion electrolytes and their role in facilitating ion transport and charge storage mechanisms are critically analysed. Novelty arises from a comprehensive comparison of these carbon materials across metal-ion systems, unveiling the synergistic effects of BDCs’ structural attributes on the performance of each supercapacitor type. This review also casts light on the current challenges, such as scalability, cost-effectiveness, and performance consistency, offering insightful perspectives for future research. This review underscores the transformative potential of BDC materials in MIHSCs and paves the way for next-generation energy storage technologies that are both high-performing and ecologically friendly. It calls for continued innovation and interdisciplinary collaboration to explore these sustainable materials, thereby contributing to advancing green energy technologies. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

29 pages, 20118 KiB  
Review
Heteroatom Doping Strategy of Advanced Carbon for Alkali Metal-Ion Capacitors
by Ti Yin, Yaqin Guo, Xing Huang, Xinya Yang, Leixin Qin, Tianxiang Ning, Lei Tan, Lingjun Li and Kangyu Zou
Batteries 2025, 11(2), 69; https://doi.org/10.3390/batteries11020069 - 8 Feb 2025
Viewed by 691
Abstract
Alkali metal-ion capacitors (AMICs) combine the advantages of the high specific energy of alkali metal-ion batteries (AMIBs) and the high power output of supercapacitors (SCs), which are considered highly promising and efficient energy storage devices. It is found that carbon has been the [...] Read more.
Alkali metal-ion capacitors (AMICs) combine the advantages of the high specific energy of alkali metal-ion batteries (AMIBs) and the high power output of supercapacitors (SCs), which are considered highly promising and efficient energy storage devices. It is found that carbon has been the most widely used electrode material of AMICs due to its advantages of low cost, a large specific surface area, and excellent electrical conductivity. However, the application of carbon is limited by its low specific capacity, finite kinetic performance, and few active sites. Doping heteroatoms in carbon materials is an effective strategy to adjust their microstructures and improve their electrochemical storage performance, which effectively helps to increase the pseudo-capacitance, enhance the wettability, and increase the ionic migration rate. Moreover, an appropriate heteroatom doping strategy can purposefully guide the design of advanced AMICs. Herein, a systematic review of advanced heteroatom (N, S, P, and B)-doped carbon, which has acted as a positrode and negatrode in AMICs (M = Li, Na, and K) in recent years, has been summarized. Moreover, emphasis is placed on the mechanism of single-element doping versus two-element doping for the enhancement in the performance of carbon positrodes and negatrodes, and an introduction to the use of doped carbon in dual-carbon alkali metal-ion capacitors (DC-AMICs) is discussed. Finally, an outlook is given to solve the problems arising when using doped carbon materials in practical applications and future development directions are presented. Full article
Show Figures

Graphical abstract

22 pages, 7929 KiB  
Review
Recent Advances in High-Performance Carbon-Based Electrodes for Zinc-Ion Hybrid Capacitors
by Ying Liu, Lechun Song, Chenze Li, Caicheng Song and Xiang Wu
Batteries 2024, 10(11), 396; https://doi.org/10.3390/batteries10110396 - 7 Nov 2024
Cited by 1 | Viewed by 1643
Abstract
Aqueous zinc-ion hybrid capacitors (ZIHCs) have emerged as a promising technology, showing superior energy and power densities, as well as enhanced safety, inexpensive and eco-friendly features. Although ZIHCs possess the advantages of both batteries and supercapacitors, their energy density is still unsatisfactory. Therefore, [...] Read more.
Aqueous zinc-ion hybrid capacitors (ZIHCs) have emerged as a promising technology, showing superior energy and power densities, as well as enhanced safety, inexpensive and eco-friendly features. Although ZIHCs possess the advantages of both batteries and supercapacitors, their energy density is still unsatisfactory. Therefore, it is extremely crucial to develop reasonably matched electrode materials. Based on this challenge, a surge of studies has been conducted on the modification of carbon-based electrode materials. Herein, we first summarize the progress of the related research and elucidate the energy storage mechanism associated with carbon-based electrodes for ZIHCs. Then, we investigate the influence of the synthesis routes and modification strategies of the electrode materials on electrochemical stability. Finally, we summarize the current research challenges facing ZIHCs and predict potential future research pathways. In addition, we suggest key scientific questions to focus on and potential directions for further exploration. Full article
Show Figures

Figure 1

Back to TopTop