You are currently on the new version of our website. Access the old version .

All Articles (137)

Perinatal depression (PND) is a severe mood disorder affecting mothers during pregnancy and postpartum, with implications for both maternal and neonatal health. Emerging evidence suggests that gut microbiota-derived metabolites play a critical role in neuroinflammation and neurotransmission. In this study, we employed an in silico approach to evaluate the pharmacokinetic and therapeutic potential of metabolites produced by Lactobacillus helveticus and Bifidobacterium longum in targeting key proteins implicated in PND, including BDNF, CCL2, TNF, IL17A, IL1B, CXCL8, IL6, IL10. The ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiles of selected microbial metabolites, including acetate, lactate, formate, folic acid, riboflavin, kynurenic acid, γ-aminobutyric acid, and vitamin B12 were assessed using computational tools to predict their bioavailability and safety. Enrichment analysis was performed to identify biological pathways and molecular mechanisms modulated by these metabolites, with a focus on neuroinflammation, stress response, and neurogenesis. Additionally, molecular docking studies were conducted to evaluate the binding affinities of these metabolites toward the selected PND-associated targets, providing insights into their potential as neuroactive agents. Our findings suggest that specific microbial metabolites exhibit favorable ADMET properties and strong binding interactions with key proteins implicated in PND pathophysiology. These results highlight the therapeutic potential of gut microbiota-derived metabolites in modulating neuroinflammatory and neuroendocrine pathways, paving the way for novel microbiome-based interventions for perinatal depression. Further experimental validation is warranted to confirm these computational predictions and explore the clinical relevance of these findings.

5 January 2026

Radar plots of the physicochemical and drug-likeness properties of selected microbial or dietary metabolites and vitamins, analyzed using ADMETlab 2.0. Each compound is assessed against common drug-likeness criteria based on key molecular descriptors. Blue lines represent the compound’s actual values; shaded areas represent acceptable ranges defined by drug-likeness filters (e.g., Lipinski, Veber, Ghose, Egan, Muegge).

Globally, large quantities of animal waste and human sewage sludge are generated annually. Their application as soil amendments can enhance soil quality and support a circular economy. However, these wastes may harbour pathogenic bacteria, posing contamination risks to soil and water and potential transmission to animals and humans. This study investigated the survival of five bacterial pathogens during six months of storage in five types of organic waste and following their subsequent application to soil. During storage, T90 values ranged as follows: Salmonella Typhimurium (2.3–17.7 days), Campylobacter jejuni (0 to 23.9 days), Escherichia coli O157:H7 (4.3 to 57.8 days), and Listeria monocytogenes (1.9 to 170.4 days). In soil, T90 values were S. Typhimurium (4.2 to 17.4 days), C. jejuni (4.8 to 26.8 days), E. coli O157:H7 (4.3 to 52.9 days), and L. monocytogenes (2 to 83.7 days). Clostridium sporogenes remained stable throughout both experiments, preventing T90 calculation. Contrary to our initial hypothesis that soil microbiota would accelerate pathogen decline, T90 values were higher during storage in 11 cases and higher in soil in nine scenarios. These findings highlight the need for pre-treatment strategies for animal waste and biosolids before land spreading to consistently mitigate risks of pathogen transmission and environmental contamination.

12 January 2026

This study focuses on discovering novel quorum-sensing inhibitors (QSIs) from endophytes of Coelothrix irregularis, aiming to develop new strategies against drug-resistant bacterial infections. From the endophytic bacterial strain Bacillus strain W10-B1, isolated from C. irregularis, twelve compounds were isolated and structurally identified. Subsequent screening against Serratia marcescens NJ01 revealed that compound (12), 3,3′-dibromo-4,4′-biphenyldiol, exhibited significant inhibitory activity against the quorum-sensing system of S. marcescens NJ01. It effectively suppressed biofilm formation, swimming, and swarming motilities of the bacterium. This work is the first to demonstrate that endophytes from C. irregularis are a novel source of potent QSIs, providing both material and theoretical foundations for combating pathogen virulence, drug resistance, and pathogenicity.

5 January 2026

Extensively drug-resistant (XDR) bacteria pose a serious global public health threat due to their high levels of resistance to multiple classes of antibiotics. This study aimed to characterize bacterial isolates obtained from clinical samples, evaluate their antibiotic resistance patterns, and investigate the antimicrobial and anticancer potential of essential oils (EOs) and their nanoemulsions (NEs). A total of 175 bacterial isolates were collected from various clinical sources, identified, and subjected to antibiotic susceptibility testing using both conventional methods and the VITEK® 2 system. Among these, nine isolates were identified as extensively drug-resistant. Among the tested EOs, carvacrol exhibited the strongest antibacterial activity, with minimum inhibitory concentrations (MICs) ranging from 14 to 35 µg/mL, compared to 8 to 19 µg/mL for meropenem. To enhance its stability and efficacy, carvacrol nanoemulsions (CANE) were prepared via ultrasonication and characterized using zeta potential measurements, which indicated a positive surface charge of +14.2 mV, while dynamic light scattering (DLS) analysis revealed a narrow size distribution with a mean hydrodynamic diameter of 411.3 nm. High-resolution transmission electron microscopy (HR-TEM) showed spherical droplets ranging from 18 to 144 nm in size, with an average diameter of 69 ± 28 nm. The nanoemulsion formulation significantly enhanced antibacterial activity, with MICs reduced to 11 ± 0.0–23 ± 0.21 µg/mL, compared to 14 ± 0.13–35 ± 0.11 µg/mL for pure carvacrol oil. Gas chromatography–mass spectrometry (GC–MS) analysis identified major active constituents, including thymol, methoxyphenyl, estragole, and D-limonene, which are likely contributors to the observed antimicrobial and anticancer effects. In addition, carvacrol nanoemulsions demonstrated potent cytotoxicity against multiple human cancer cell lines (HepG2, MCF-7, PC-3, and Caco-2) while showing minimal toxicity toward normal cells. Confocal microscopy further confirmed apoptosis induction in treated cancer cells, suggesting a mitochondria-mediated apoptotic pathway. In conclusion, this study highlights the strong therapeutic potential of essential oils—particularly carvacrol and its nanoemulsion formulation—as dual-action agents exhibiting broad-spectrum antibacterial activity against XDR pathogens and selective cytotoxicity against cancer cells.

4 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Bacteria - ISSN 2674-1334