Special Issue "Materials for Thermal Energy Storage"

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Energy".

Deadline for manuscript submissions: 31 July 2019

Special Issue Editors

Guest Editor
Prof. Dr. Luisa F. Cabeza

GREA Innovació Concurrent, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain
Website | E-Mail
Interests: thermal energy storage; energy efficiency; solar energy; buildings; industry
Guest Editor
Dr. Andrea Frazzica

Institute of Advanced Technologies for Energy, Italian National Council Research (CNR), 98126 Messina, Italy
Website | E-Mail
Interests: development and characterization of materials and components for thermal energy storage and conversion; detailed models of heat and mass transfer in porous media; development of renewable heating and cooling solutions

Special Issue Information

Dear Colleagues,

Thermal energy storage (TES) is becoming a key technology for the implementation of renewable energies in buildings and in industry, and also in increasing energy efficiency of our systems. Moreover, TES will clearly contribute in the decrease of CO2 emissions and climate change mitigation. However, TES systems need a good material selection. Moreover, available materials for TES applications need to be improved and enhanced. This Special Issue aims at gathering the best papers on development, improvement and enhancement of materials for TES. Materials for sensible, latent, sorption and chemical TES will be compiled

Prof. Luisa F. Cabeza
Dr. Andrea Frazzica
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Mixed Metal Oxide Systems Applied to Thermochemical Storage of Solar Energy: Benefits of Secondary Metal Addition in Co and Mn Oxides and Contribution of Thermodynamics
Appl. Sci. 2018, 8(12), 2618; https://doi.org/10.3390/app8122618
Received: 19 October 2018 / Revised: 3 December 2018 / Accepted: 8 December 2018 / Published: 14 December 2018
PDF Full-text (5474 KB) | HTML Full-text | XML Full-text
Abstract
Thermochemical energy storage is promising for the long-term storage of solar energy via chemical bonds using reversible redox reactions. The development of thermally-stable and redox-active materials is needed, as single metal oxides (mainly Co and Mn oxides) show important shortcomings that may delay
[...] Read more.
Thermochemical energy storage is promising for the long-term storage of solar energy via chemical bonds using reversible redox reactions. The development of thermally-stable and redox-active materials is needed, as single metal oxides (mainly Co and Mn oxides) show important shortcomings that may delay their large-scale implementation in solar power plants. Drawbacks associated with Co oxide concern chiefly cost and toxicity issues while Mn oxide suffers from slow oxidation kinetics and poor reversibility. Mixed metal oxide systems could alleviate the above-mentioned issues, thereby achieving improved materials characteristics. All binary oxide mixtures of the Mn-Co-Fe-Cu-O system are considered in this study, and their properties are evaluated by experimental measurements and/or thermodynamic calculations. The addition of Fe, Cu or Mn to cobalt oxide decreased both the oxygen storage capacity and energy storage density, thus adversely affecting the performance of Co3O4/CoO. Conversely, the addition of Fe, Co or Cu (with added amounts above 15, 40 and 30 mol%, respectively) improved the reversibility, re-oxidation rate and energy storage capacity of manganese oxide. Computational thermodynamics was applied to unravel the governing mechanisms and phase transitions responsible for the materials behavior, which represents a powerful tool for predicting the suitability of mixed oxide systems applied to thermochemical energy storage. Full article
(This article belongs to the Special Issue Materials for Thermal Energy Storage)
Figures

Graphical abstract

Open AccessArticle Synthesis and Investigation of Thermal Properties of Highly Pure Carboxylic Fatty Esters to Be Used as PCM
Appl. Sci. 2018, 8(7), 1069; https://doi.org/10.3390/app8071069
Received: 30 May 2018 / Revised: 25 June 2018 / Accepted: 27 June 2018 / Published: 30 June 2018
PDF Full-text (4700 KB) | HTML Full-text | XML Full-text
Abstract
Latent heat storage systems are gaining the attention of researchers as possible substitutes to conventional sensible heat storage systems due to their compactness and their ability to absorb and release heat almost isothermally. Among the Phase Change Materials (PCM) for energy storage studied
[...] Read more.
Latent heat storage systems are gaining the attention of researchers as possible substitutes to conventional sensible heat storage systems due to their compactness and their ability to absorb and release heat almost isothermally. Among the Phase Change Materials (PCM) for energy storage studied so far, esters are believed to show promising properties. In particular, a broad range of melting temperatures, little to no supercooling, low corrosivity, chemical and thermal stability, and high enthalpies of fusion are reported. Many esters have the advantage of being bio-based and biodegradable, making them more sustainable in comparison to other popular PCM. Still, a clear lack of experimental data exists in regards to this class. In the present study, esters derived from saturated fatty carboxylic acids (myristic, palmitic, stearic, behenic), coupled with primary linear alcohols of different length (methanol, 1-decanol) were synthesized through Fischer esterification and their properties were investigated. Purities higher than 89% were obtained for all cases as proven by gas chromatography coupled with mass spectroscopy and nuclear magnetic resonance analysis. Additionally, the esters’ formation and reaction kinetics were characterized by attenuated total reflectance infrared spectroscopy. The esters produced showed to possess relatively high enthalpies of fusion above 190 J/g and thermal stability over three repeated cycles with differential scanning calorimetry. The melting points measured ranged between 20 °C and 50 °C, therefore proving to be interesting candidates for low-medium temperature applications such as heating and cooling in buildings. A correlation could be observed between the chemical structure and melting point of the produced esters. Additionally, thermogravimetric analysis revealed a higher thermal resistance for esters with longer aliphatic chains in comparison to shorter-chained ones. Full article
(This article belongs to the Special Issue Materials for Thermal Energy Storage)
Figures

Figure 1

Open AccessArticle Trouton’s Rule for Vapor Sorption in Solids
Appl. Sci. 2018, 8(4), 638; https://doi.org/10.3390/app8040638
Received: 21 December 2017 / Revised: 13 April 2018 / Accepted: 13 April 2018 / Published: 20 April 2018
PDF Full-text (5871 KB) | HTML Full-text | XML Full-text
Abstract
Hygroscopic salts exhibiting fast and reversible hydration are promising systems for seasonal heat storage, providing the possibility of storing excess solar energy from the warm season for later use during the cold season. For heat storage, the salt is dehydrated with the available
[...] Read more.
Hygroscopic salts exhibiting fast and reversible hydration are promising systems for seasonal heat storage, providing the possibility of storing excess solar energy from the warm season for later use during the cold season. For heat storage, the salt is dehydrated with the available heat, and for heat recovery, the salt is rehydrated. There are many salt hydration transitions and for selecting the most suited ones with respect to the envisaged use cases, temperatures of dehydration and rehydration are needed, as well as the heat storage density. Estimation of these properties requires entropy and enthalpy changes of the transitions. Collections of hydration entropies and enthalpies have been published, but not all data seems reliable for various reasons, and it is often hard to access original sources and experimental conditions. For the necessary data validation, we propose the use of Trouton’s rule, known to hold for the evaporation of classes of fluids. Besides data validation, Trouton’s rule is useful for predicting heat storage densities and vapor pressures when only the transition enthalpy is known. We discuss the validity of Trouton’s rule for salt hydration and ammoniation transitions by theoretical and experimental evidence on the available extensive data collections. Full article
(This article belongs to the Special Issue Materials for Thermal Energy Storage)
Figures

Figure 1

Review

Jump to: Research

Open AccessReview Mg-Based Hydrogen Absorbing Materials for Thermal Energy Storage—A Review
Appl. Sci. 2018, 8(8), 1375; https://doi.org/10.3390/app8081375
Received: 24 July 2018 / Revised: 8 August 2018 / Accepted: 9 August 2018 / Published: 15 August 2018
PDF Full-text (2575 KB) | HTML Full-text | XML Full-text
Abstract
Utilization of renewable energy such as solar, wind, and geothermal power, appears to be the most promising solution for the development of sustainable energy systems without using fossil fuels. Energy storage, especially to store the energy from fluctuating power is quite vital for
[...] Read more.
Utilization of renewable energy such as solar, wind, and geothermal power, appears to be the most promising solution for the development of sustainable energy systems without using fossil fuels. Energy storage, especially to store the energy from fluctuating power is quite vital for smoothing out energy demands with peak/off-peak hour fluctuations. Thermal energy is a potential candidate to serve as an energy reserve. However, currently the development of thermal energy storage (TES) by traditional physical means is restricted by the relatively low energy density, high temperature demand, and the great thermal energy loss during long-period storage. Chemical heat storage is one of the most promising alternatives for TES due to its high energy density, low energy loss, flexible temperature range, and excellent storage duration. A comprehensive review on the development of different types of Mg-based materials for chemical heat storage is presented here and the classic and state-of-the-art technologies are summarized. Some related chemical principles, as well as heat storage properties, are discussed in the context. Finally, some dominant factors of chemical heat storage materials are concluded and the perspective is proposed for the development of next-generation chemical heat storage technologies. Full article
(This article belongs to the Special Issue Materials for Thermal Energy Storage)
Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

1. Title: Design procedure of wallboards for energy storage in buildings
    Simonetta Lucia Pagliolico*, Guido Sassi

 

Back to Top