You are currently viewing a new version of our website. To view the old version click .

Advanced Biometrics with Deep Learning

This special issue belongs to the section “Computing and Artificial Intelligence“.

Special Issue Information

Dear Colleagues,

Biometrics such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition etc. as a means of identity management has become commonplace nowadays for various applications. Biometric systems follow a typical pipeline that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction and recognition based solely on biometric data. The objective of this Special Issue is to invite high-quality, state-of-the-art research papers that deal with challenging issues in advanced deep learning-based biometric systems. We solicit the original papers of unpublished and completed research that are not currently under review by any other conference/magazine/journal. Topics of interest include, but are not limited to:

  • Biometric signal, image and video preprocessing based on deep learning
  • Biometric feature extraction based on deep learning
  • Biometric classification and recognition based on deep learning
  • End-to-end deep learning for biometric systems
  • Multimodal biometrics based on deep learning
  • Spoof detection based on deep learning
  • Biometric encryption and template protection based on deep learning.

Prof. Dr. Andrew Teoh Beng Jin
Prof. Dr. Lu Leng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Appl. Sci. - ISSN 2076-3417