Double Additive Margin Softmax Loss for Face Recognition
Abstract
:1. Introduction
2. Preliminaries
3. Double Additive Margin Softmax Loss
3.1. Geometric Interpretation
3.2. Feature Distribution Visualization on MNIST Dataset
3.3. Algorithm
Algorithm 1: The steps of the DAM-Softmax Loss |
: Feature Scale s, Margin Parameter m in Equation (7), Randomly initialized weights , |
Input images , Batch size N |
1. Normalize the input image (), and make the new = |
2. Normalize the weight (), and make the new = |
3. According to the Equation (7), introducing the variable substitutions ( the new = |
and the new = ) and get the |
4. According to the Equation (7), introducing the variable substitutions ( the new = |
and the new = ) and get |
5. Calculate “”, and get “” in the Equation (6) and the Equation (7) |
6. Calculate “”, and get “” in the Equation (6) and the Equation (7) |
7. Construct loss functioin: |
: Loss function L |
4. Experiment
4.1. Implementation Settings
Datasets
4.2. Network Architecture and Parameter Settings
4.3. Effect of Hyperparameter m
4.4. Comparison with State of the Art Loss Functions on LFW Dataset
4.5. Comparison with State of the Art Loss Functions on CFP-FP, CPLFW and CALFW Datasets
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Nice, France, 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on cOmputer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning face representation from scratch. arXiv 2014, arXiv:1411.7923. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010, Paris, France, 22–27 August 2010; pp. 177–186. [Google Scholar]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 499–515. [Google Scholar]
- Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). IEEE, Santa Barbara, CA, USA, 26–27 October 2006; Volume 2, pp. 1735–1742. [Google Scholar]
- Cheng, D.; Gong, Y.; Zhou, S.; Wang, J.; Zheng, N. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1335–1344. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-margin softmax loss for convolutional neural networks. arXiv 2016, arXiv:1612.02295. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 212–220. [Google Scholar]
- Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, Y.; Wang, X.; Tang, X. Deep learning face representation by joint identification-verification. arXiv 2014, arXiv:1406.4773. [Google Scholar]
- Huang, G.B.; Learned-Miller, E. Labeled Faces in the Wild: Updates and New Reporting Procedures; Dept. Comput. Sci. Univ. Massachusetts Amherst: Amherst, MA, USA, 2014; pp. 14–003. [Google Scholar]
- Sengupta, S.; Chen, J.C.; Castillo, C.; Patel, V.M.; Chellappa, R.; Jacobs, D.W. Frontal to profile face verification in the wild. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, Lake Placid, NY, USA, 7–9 March 2016; pp. 1–9. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, D.; Greg, S.; Davis, A.; Dean, J.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kafai, M.; Eshghi, K.; Le, A.; Bhanu, B. A Reference-Based Framework for Pose Invariant Face Recognition. In Proceedings of the IEEE International Conference Workshops on Automatic Face and Gesture Recognition, Ljubljana, Slovenia, 4–8 May 2015. [Google Scholar]
- Zheng, T.; Deng, W.; Hu, J. Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments. arXiv 2017, arXiv:1708.08197. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. arXiv 2018, arXiv:1801.07698. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Wang, F.; Xiang, X.; Cheng, J.; Yuille, A.L. Normface: l 2 hypersphere embedding for face verification. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1041–1049. [Google Scholar]
Datasets | Identity | Image |
---|---|---|
CPLFW [20] | 5749 | 11625 |
CALFW [21] | 5749 | 12174 |
CFP-FP [18] | 500 | 7000 |
Parameter m | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 |
Accuracy Rate | 97.21% | 97.34% | 97.45% | 97.68% | 97.57% | 97.59% |
Parameter m | 0.1 | 0.13 | 0.15 | 0.17 | 0.18 | 0.2 | 0.22 | 0.25 |
Accuracy Rate | 97.68% | 97.74% | 97.82% | 97.94% | 97.97% | 97.89% | 97.81% | 97.65% |
Model | Accuracy Rate |
---|---|
Softmax ( resnet-face18, 110 epoch ) | 97.08% |
L-Softmax ( resnet-face18, 110 epoch ) [10] | 97.33% |
A-Softmax ( resnet-face18, 110 epoch ) [14] | 97.52% |
AM-Softmax ( resnet-face18, 110 epoch ) [15] | 97.68% |
DAM-Softmax ( resnet-face18, 47 epoch ) | 97.83% |
DAM-Softmax ( resnet-face18, 110 epoch ) | 97.97% |
Method | CALFW | CPLFW | CFP-FP |
---|---|---|---|
Softmax | 88.21% | 77.54% | 89.54% |
AM-Softmax | 89.72% | 80.21% | 92.12% |
DAM-softmax | 90.17% | 82.08% | 93.26% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Chen, C.; Han, G.; Hou, X. Double Additive Margin Softmax Loss for Face Recognition. Appl. Sci. 2020, 10, 60. https://doi.org/10.3390/app10010060
Zhou S, Chen C, Han G, Hou X. Double Additive Margin Softmax Loss for Face Recognition. Applied Sciences. 2020; 10(1):60. https://doi.org/10.3390/app10010060
Chicago/Turabian StyleZhou, Shengwei, Caikou Chen, Guojiang Han, and Xielian Hou. 2020. "Double Additive Margin Softmax Loss for Face Recognition" Applied Sciences 10, no. 1: 60. https://doi.org/10.3390/app10010060
APA StyleZhou, S., Chen, C., Han, G., & Hou, X. (2020). Double Additive Margin Softmax Loss for Face Recognition. Applied Sciences, 10(1), 60. https://doi.org/10.3390/app10010060