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Abstract: Although the face detection problem has been studied for decades, searching tiny faces
in the whole image is still a challenging task, especially in low-resolution images. Traditional face
detection methods are based on hand-crafted features, but the features of tiny faces are different
from those of normal-sized faces, and thus the detection robustness cannot be guaranteed. In
order to alleviate the problem in existing methods, we propose a pre-identification mechanism
and a cascaded detector (PMCD) for tiny-face detection. This pre-identification mechanism can
greatly reduce background and other irrelevant information. The cascade detector is designed with
two stages of deep convolutional neural network (CNN) to detect tiny faces in a coarse-to-fine
manner, i.e., the face-area candidates are pre-identified as region of interest (RoI) based on a real-time
pedestrian detector and the pre-identification mechanism, the set of RoI candidates is the input of
the second sub-network instead of the whole image. Benefiting from the above mechanism, the
second sub-network is designed as a shallow network which can keep high accuracy and real-time
performance. The accuracy of PMCD is at least 4% higher than the other state-of-the-art methods on
detecting tiny faces, while keeping real-time performance.

Keywords: face detection; tiny faces; pre-identification mechanism; cascaded detector; deep learning;
convolutional neural network

1. Introduction

Face detection is one of the most hot topics in computer vision as it is a key step for many
different applications, such as face recognition [1], facial expression analysis [2], eye-tracking [3], facial
performance capture [4], facial expression transformation [5], etc. In fact, the applications are not
limited to the traditional areas, there are still some exciting interdisciplinary applications [6–11] in the
field of animation. However, many factors such as the illumination, occlusion, and the diversity of
faces cause huge challenges in face detection.

Using universal face templates to detect faces is one of the main research fields of traditional
methods. Determining whether there is a face is undertaken by calculating the correlation coefficient
between the area which is detected and the template [12]. However, facial skin color, different
expressions, and occlusion lead to the method being less robust and computationally complex.

In recent years, many researchers shift their attention from the traditional methods to convolutional
neural networks (CNNs) [13–15] since they have achieved remarkable success in many important tasks
of computer vision, such as classification, detection, and recognition. Lots of approaches have been
proposed to solve the problem of tiny-face detection, which aims to search a tiny face in a whole image,
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especially in a low-resolution image. However, these methods cannot achieve satisfactory performance
because the features of tiny faces are different from those of big faces and tiny faces contain limited
information available for face detection.

It is challenging to detect small objects in image detection. That is because these networks are
designed to propose default boxes and the classification score is calculated from one single deep CNN.
For example, faster Region-based Convolutional Neural Networks (R-CNN) [16] extracts features by
visual geometry group (VGG)-16 [17], but when the face size is less than 16 × 16, the output in ‘conv5’
is less than one pixel. As the convolutional layer is deeper, each pixel in the feature map gathers
more information outside of the original input area and lower information of the region of interest
(RoI), which means these methods cannot keep the performance when targets are small. However, a
single shallow CNN cannot get enough information for object detection, and thus a cascaded structure
which is usually divided into a prediction part and a regression part becomes a popular and effective
framework for face detection. A cascade framework can generate a large number of bounding box
candidates based on a low threshold, and then extracts the regression scores of these candidates. That
is, the information loss of shallow convolutional layers can be effectively relieved.

Moreover, the above-mentioned face detection algorithms cannot keep good performance in video
surveillance, because they are designed for high-resolution images and big faces. Limited by the cost of
large-scale surveillance and the scale of data, the face targets are often small and not clear. Additionally,
the head movement tends to be more frequent than the body, making it difficult to detect tiny faces in
multiple views. Previous methods are difficult to accurately detect tiny faces in this kind of scenario. If
tiny faces can be detected automatically in real time, the telephoto lens would immediately be aimed
at the suspicious persons’ faces, which can help the police to conduct reconnaissance. This is very
useful in public security, since violent incidents and terrorist attacks have occurred in many places in
recent years.

In order to alleviate the above problems, this paper presents a cascaded framework named
pre-identification mechanism and a cascaded detector (PMCD) to detect tiny faces based on two
independent CNNs and a pre-identification mechanism. The two sub-networks can be trained
separately, which greatly improves the flexibility in training networks. The first sub-network of PMCD
and the pre-identification mechanism generate a set of RoI candidates, defined by the pedestrian area
in the image. Then, the RoI candidates are resized to different scales to build an image pyramid as
the input of the following network. As the input of the second sub-network has greatly reduced the
irrelevant area, a shallow network can learn enough features and guarantee real-time performance.

We tested PMCD on a self-collected dataset and Caltech Pedestrian [18] dataset. Due to the
scarcity of the tiny-face detection dataset, we collected 1370 images, 2450 faces in total and most faces
were less than 20 × 20. In order to test in different situations, the size of 562 faces were larger than
20 × 20, while the rest were all smaller than the size in the self-collected dataset. As the results showed,
compared with other state-of-the-art methods, PMCD achieves impressive performance in tiny-face
detection and it can achieve real-time detection.

To this end, this paper aims to alleviate the issues discussed above which are tiny-face detection
and keeping real-time features.

• We propose a new pre-identification mechanism to obtain a set of face candidates as the input
for the face detector, which contains higher face proportion than that in the original image. The
mechanism greatly reduces miss rate of tiny-face detection and leads to the robustness of PMCD.

• We propose a novel cascade neural network called PMCD for real-time tiny-face detection. The
first sub-network is a deep pedestrian detector as a part of the pre-identification mechanism, and
the second sub-network is designed based on a shallow multi-task CNN to detect faces in the
RoI candidates.

The rest of this paper is as follows. Section 2 introduces related works on face detection. Section 3
details the framework including two sub-networks and the pre-identification mechanism. Section 4
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mainly describes the performance of PMCD and compares it with other state-of-the-art methods.
Section 5 concludes and looks forward to future works.

2. Related Works

Face detection is the key step in many different face-related applications and studies [19]. Most of
the early work was designed for high-resolution images and large targets by using statistical learning
methods to automatically extract features. Yaman et al. [20] proposed a framework to detect faces
by utilizing histogram-based feature extraction with random subspace and voting ensemble learners.
Luo et al. [21] proposed a face location algorithm which is developed to extract face regions with a high
proportion of skin. This type of method increases the speed of the operation. Since the features are not
completely selected by humans, the robustness is improved. However, the effect is still poor when
the target is small. Mohanty et al. [22] proposed a new feature and combined it with the gray level
feature and skin color feature, and this method improves detection speed in complex backgrounds and
reduces the computational complexity. Additionally, Ma et al. [23] used the geometric relationship
between facial organs to generate four Haar-like features for face detection based on the traditional
Adaboost classifier, which greatly reduces the detection time. One of the most impressive traditional
methods is Viola-Jones [24] which designed cascade classifiers based on the Haar feature and AdaBoost
classifier, but all of these traditional methods focus on improving the performance with more effective
hand-crafted features and more powerful classifiers [25–28]. These features or detection structures
have certain subjective factors, which leads to the robustness of these frameworks being poor, and the
operation being complicated and time consuming.

In recent years, deep learning models offer new ideas in solving many research problems such
as classification, object detection, image segmentation, image restoration etc. Convolutional neural
networks have achieved remarkable success in many different tasks of computer vision, especially for
object detection. The family of Region-based Convolutional Neural Networks (R-CNN) [17,29,30], You
Only Look Once (YOLO) [31], and Single Shot Multibox Detector (SSD) [32] are the most efficient and
popular approaches for detecting objects these years. Inspired by these brilliant methods, researchers
have proposed many effective and robust face detection structures. Jiang et al. [33] investigated
applying faster R-CNN to face detection, compared with previous proposed models, and its accuracy
has a significant improvement. Contextual multi-scale region-based CNN (CMS-RCNN) [34] combined
multi-scale information which consists of the region proposal component and the RoI detection
component to detect faces. Wan et al. [35] improved Faster R-CNN with the hard negative mining
and significant boosts, and the hard negatives harvested from a large set of background examples.
Sun et al. [36] applied some effective strategies including feature concatenation, hard negative mining,
multi-scale training, model pre-training, and proper calibration to improve Faster R-CNN in face
detection. Zhang et al. [37] light-designed R-CNN and improved the performance by integrating
multi-scale training, multi-scale testing, some tricks for inference, and a vote-based ensemble method.
Enlightened by SSD, Hsu et al. [38] proposed Multiple Dropout Framework to detect faces. Due to the
anchor mechanism, the family of R-CNN can detect objects which occupy the majority of an image
which are clear and huge, but the accuracy of these methods drop rapidly when the target is small.

Li et al. [39] proposed a novel cross-level parallel network (CLPNet) to extract low-level features
and fuse them in the high-level stage, and CLPNet achieved remarkable performance on crowd counting.
Triantafyllidou et al. [40] proposed a novel lightweight deep neural network and a new training method
of progressive positive and hard negative sample mining to improve training speed and accuracy.
A Fully Convolutional Network (FCN) [41] generated face proposals by the heat map of facial parts
which are scored by a new facial parts responses method by their spatial structure and arrangement.
As described in Section 1, cascaded structures are more advantageous than single networks in the
task of face detection, and thus have been widely used in face detection, CascadedCNN [42] is a
cascade framework built on CNNs and a CNN-based calibration stage was introduced to adjust
the position of the detection window. Qin et al. [43] proposed joint training to achieve end-to-end
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optimization for CNN cascade and showed back propagation used in training a single CNN can
be naturally used in training the cascade CNN structure. Coarse-to-Fine Auto-encoder Network
(CFAN) [44] cascades a few Stacked Auto-encoder Networks to accomplish different tasks including
face detection. Multitask Cascaded Convolutional Networks (MTCNN) [45] is a multi-task cascade
network to detect faces by three stages in a coarse-to-fine detection structure. Min et al. [46] proposed
a multi-scale and multi-channel shallow convolutional network (MMSC) for real-time face detection
after the pre-identified method detecting faces in the images based on a traditional pedestrian detection
method. Hu et al. [47] proposed a multi-task detector with hybrid resolutions (HR), which detects
different face scales from multiple layers of a single neural network.

The methods mentioned above have good performance in face detection when images are of high
resolution and the faces are big, but all of these traditional methods and region-based single deep
CNNs cannot keep a high accuracy in tiny-face detection, the reason is that the effective information of
tiny faces is very limited, as explained in Section 1. Inspired by [46], we designed a novel structure to
reduce the unnecessary input of the face detection order to improve the effectiveness and propose a
new pre-identification mechanism.

3. Proposed Method

3.1. Overview of Our Method

In this paper, we used two convolutional neural networks (CNNs) for coarse-to-fine face detection.
CNN is actually a multi-layer perception, where each layer is composed of multiple feature maps
through different convolutional kernels. The most important advantage of this structure is that the
parameters of CNN are self-learned through training data, so the structure avoids the generalization
weakness caused by hand-crafted features. CNN usually consists of convolutional layers, pooling
layers, and fully connected layers. A convolutional layer is used to extract features, a pooling layer
aims to reduce the amount of data for calculation, and a fully connected layer is designed to combine
the extracted local features into a powerful global feature. In practical operations, convolution layers
and pooling layers are often designed as a whole, i.e., the structure would pool the feature maps
after the convolutional operation. However, the output of convolutional layers is not immediately
pooled, it is passed to the activation function first and then the results are passed to the pooling layers.
Activation functions, which are always nonlinear functions, are used for feature mapping in order
to help solve nonlinear problems. The parameters in convolutional layers and pooling layers are
learned through the back-propagation algorithm, so the self-learned characteristic makes CNN far
superior to the traditional algorithms in precision and robustness in many computer vision tasks such
as classification, detection, tracking, etc.

Although face detection has received extensive attention in recent years, it still entails many
challenges, such as occlusion, complex environments, small targets, etc. This paper aims to solve
the problem of tiny-face detection. Due to the low resolution of face images, detecting faces is not
an easy task when a pedestrian is far away from the camera. In this situation, the information of a
body is much more than the face information. The pedestrians’ faces can be roughly calibrated based
on body context information. Considering this, we defined the region at the top of the pedestrians’
bounding boxes as RoI candidates, obtained the candidate regions by a pedestrian detector and a novel
pre-identification algorithm to reduce the search range as pre-processing.

Methods of pedestrian detection include the method based on statistical learning methods,
background modeling, and neural networks. The most influential pedestrian detection structure is
what Dalal et al. [48] proposed, which uses Support Vector Machine (SVM) as the classifier to detect
faces in the images based on the histograms of oriented gradient (HOG) features. Lots of features
have been proposed with better robustness and result in better classification accuracy for pedestrian
detection [49–52]. However, these features are often specifically designed to a particular situation,
hence the robustness of these traditional methods is not good. In order to alleviate the problems
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mentioned above, more and more researchers have adopted convolutional neural networks (CNNs) to
detect objects these years [17,29–32,53]. There are many images from different scenes in the training set,
so the robustness of features learned by neural networks is better than hand-crafted features. Therefore,
these methods based on CNNs have a huge improvement in accuracy and robustness.

Our method consists of two parts, pre-identification detection and face detection. In the
pre-identification detection part, we detected the bounding box of the pedestrian by a deep CNN first,
then the RoI candidates would be selected by the self-adaptively algorithm, after that we built an image
pyramid, which was used to adapt different sizes of faces, as the input for the face detection network.
In the face detection part, image pyramid would be passed to our proposed multitask neural network
to detect faces. As the previous steps significantly reduce background interference, the multi-task face
detector requires only a shallow structure to perform efficiently and in real-time. What we proposed is
a cascaded framework, and we can train the two sub-networks separately. The whole framework is
shown in Figure 1.

Figure 1. The whole framework.

3.2. Proposed Pre-Identification Mechanism

3.2.1. Pedestrian Detector

The bounding boxes of the pedestrians are detected by a deep CNN [32] in order to narrow the
detection range of the face detector, as seen in Figure 1. Firstly, the image size is resized to 300 × 300.
Afterwards, the features are extracted by VGG-16 and then fed to six additional convolutional layers for
detecting the targets. All default boxes are predicted by combining many feature maps with different
scales and ratios, multiple default boxes are set to cover various sizes and shapes of targets. Finally,
non-maximum suppression (NMS) is used to obtain the final bounding box which has the highest
score in the set of bounding boxes of the target.
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Convolutional layers, except VGG-16 in the pedestrian detector, predict bounding boxes and
offsets. There are different receptive fields in different levels of feature maps. The scale of the default
boxes is computed as:

sk = smin +
smax − smin

m− 1
(k− 1), k ε [1, m], (1)

where smin is 0.2 and smax is 0.9, the length lk and the width wk of the bounding box are calculated
based on sk; m is the number of default boxes, W is the width of the input and L is the length of the
input, r is the ratio of the length and the width in each feature map. The detailed calculation formula is
shown as: {

wk = W × sk ×
√

r
lk = L × sk/

√
r

. (2)

3.2.2. Pre-Identification Mechanism

In order to reduce the misclassification rate in the face detector and reduce the interference
of other information, we should reduce the input of the face detector. Face areas are adaptively
estimated according to the proportion of the pedestrian area. The proportional relationship between the
face-region and the pedestrian-region is estimated by our newly proposed mechanism. The face-region
selection operator is used to generate a set of face candidate regions which is described in Algorithm
1, and the whole process of face pre-identification is shown in Figure 1. Herein, Ni and Di are two
sets of coordinates, Ni contains the upper-left corner coordinates of the bounding box N1

i and the
lower-right corner coordinates N2

i through the pedestrian detector, N1
i and N2

i are composed by x and
y; Di contains the upper-left corner coordinates of the bounding box D1

i and the lower-right corner
coordinates D2

i through the pre-identification algorithm, D1
i and D2

i are composed by x and y, and i
means the i-th person in the image.

Algorithm 1. Pre-identification.

Input: Coordinates of the bounding boxes Ni through the pedestrian detector
Output: Coordinates of the RoIDi
1. T← 0.9
2. i← 0
3. θ← (1− T)/2
4. while Ni , ∅
5. l← θ×

(
N2

i .x−N1
i .x

)
6. D1

i .x← N1
i .x + l

7. D1
i .y← N1

i .y
8. D2

i .x← N2
i .x− l

9. D2
i .y← N1

i .y +
(
N2

i .x−N1
i .x

)
− 2 ∗ l

10. i← i + 1
11. end while

3.2.3. Image Pyramid

The input image size is fixed for the face detector, but the size of the target is not fixed. Therefore,
image pyramids can be used to detect different sizes of objects with the fixed input size. We build image
pyramids upon the set of RoI candidates. RoIs are resized to different scales which are adaptively
computed by the image pyramid method to build an image pyramid, which is the input of the second
multi-task face detector. The image pyramid algorithm is described in Algorithm 2. Herein, Di is the
coordinate set of RoI, which is the same as in Section 3.2.2, i means the i-th person in the image, factor
is the scaling factor, Pi is an image pyramid of the i-th person, containing many resized images. The
threshold of minlin Algorithm 2 is set to 12, since the size of input of the face detector is 12 and the
information is pretty limited if the size of face is smaller than 12.
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Algorithm 2. Image pyramid.

Input: Coordinates of the RoI Di
Output: Image pyramid Pi
1. w← D2

i .x−D1
i .x

2. l← D2
i .y−D1

i .y
3. count← 0
4. f actor← 0.7
5. if w < l
6. minl← w
7. else
8. minl← l
9. end if
10. if minl < 12
11. minl← 12
12. end if
13. m← 12/minl
14. minl← minl ∗m
15. while minl ≥ 12
16. scales← scales + m ∗ f actorcount

17. minl← minl ∗ f actor
18. Pcount

i ← Resize(Di, scales)
19. count← count + 1
20. end while

3.3. Multitask Face Detector

Before detecting the face, we pre-processed the image to reduce the size of the input. The detector
is a shallow neural network, but the depth is enough to learn useful features of tiny faces, because the
input of the detector is preprocessed, and background information and other interferences is greatly
reduced. Another benefit of shallow neural networks is that the parameters are much smaller than
deeper detectors, resulting in fast operation and real-time performance.

Each image pyramid is passed to the face detector to detect the coordinates of the face. The real
coordinates are calculated based on the detected coordinates of bounding boxes and the image pyramid
scales. Finally, the NMS method is used to eliminate the redundant bounding boxes by getting multiple
overlapped bounding boxes and reducing them to only one. The structure of our face detector is
shown in Figure 1. The stride of the convolutional layer is 1, and the step size of the pooling layer is 2.

Different convolutional kernel sizes may result in different feature extraction effects. Considering
that the detected target is a tiny face with the input size is 12× 12, we apply a 3× 3 filter for all the
convolutional layers. There are two tasks in the face detector, face classification and bounding box
regression. Compared to other complex multiclass objection classification and detection methods, the
input of our proposed network is the image pyramid generated from the set of RoI candidates and the
number of classes is only 2, face and non-face, so this network does not need a deep network structure
and a lot of convolutional kernels in each layer. ReLU is applied as nonlinearity activation function in
this detector, which is:

f(x) =
{

0, x ≤ 0
x, x < 0

. (3)

Face classification is a binary classification problem, so we use the cross-entropy logistic regression
function as the loss function. The function is designed as follows:

Li = −
(
yi log pi +

(
1− yi

)(
1− log pi

))
, (4)

where pi is the possibility calculated based on the input xi; yi is the predicted class, yi ∈ {1, 0}.
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For the task of bounding box regression, we employ the Euclidean loss of the offset between the
predicted bounding box and the nearest ground truth. Predicted by the network are the upper-left
coordinate, width, and length. The loss function is given by:

Gi =‖ b̂i − bi ‖
2, (5)

where b̂i is the class that the network predicts and bi is the ground-truth coordinate. We use four
values to represent a bounding box, i.e., the upper-left coordinate, width, and length. So b̂i and bi are
four-dimensional vectors.

The total loss of this network is the weighted sum of the loss values of the above two functions.
Faces are contained in RoI candidates after we preprocess the input of the multitask detector, therefore
we give the face detector a high tolerance for features of tiny faces. This trick makes the tiny faces
pass to the classification task of the multitask detector with a low threshold. Therefore, we give a big
weight to the loss function of the bounding box. In addition, the total loss function is as follows:

Lossi = t1 × Li + t2 ×Gi, (6)

where Li and Gi are the losses of face classification and bounding box regression respectively; t1 and t2

are the weights of each task. Here, t1 is set to 0.3 and t2 is set to 0.7.

4. Experiments

The experimental environment used in this paper is as follows: Intel Xeon E-2136 CPU @3.30
GHz, 16 GB internal storage, Windows 10 64 bit operating system, Microsoft, US.

We tested the performance of our framework on different datasets composed of a self-collected
dataset and Caltech Pedestrian dataset 18. The self-collected dataset was introduced in Section 1. The
Caltech dataset was collected by the California Institute of Technology on 2012, and it is often used in
the design and testing of pedestrian detection algorithms. It contains a video of a city environment
with a duration of about 10 h, and the image resolution is 640× 480. The pedestrian targets are divided
into different levels according to the size and the occlusion.

Figure 2 shows PMCD could detect the face accurately when the pedestrians are in different
environments containing occlusion, incomplete body, and poor light.

Our mechanism consists of SSD [32] and the pre-identification mechanism, which is mentioned in
Section 3.2.2. The accuracy of face detection in our framework is directly related to the performance of
the mechanism, so we tested our mechanism on the Caltech Pedestrian dataset. In order to prove that
our mechanism is superior to other state-of-the-art methods, we drew the curve of false positive per
image (FPPI)-miss rate by the evaluation method [54], as shown by:

FPPI = m/N, (7)

where m is the number of false positive, N is the number of images.

miss rate = fa/(fa + tr), (8)

where fa is the number of false negatives, tr is the number of true positives.
We compared our pre-identification mechanism with Viola-Jones (VJ) [24], histogram of oriented

gradient (HOG) [48], Scale Aware (SA)-Fast RCNN [55] and region proposal network(RPN)+ boosted
forests (BF) [56]. As shown in Figure 3, ours performs better than the other methods, and the detection
results of the corresponding method are better when the miss rate is lower.
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Figure 2. Face detection in different situations based on pre-identification mechanism and a cascaded
detector (PMCD): (a) the face detected with occlusion on some part of the body; (b) the face detected
with occlusion on some part of the body in complex backgrounds; (c) the tiny face detected with good
light; (d) the tiny face detected with poor light.

Figure 3. The curve of false positive per image (FPPI)-miss rate.

As shown in Figure 3, SSD achieves the best performance in these methods. Meanwhile, the miss
rates of VJ and HOG are high, the main reason is that traditional methods usually train the classifiers
by hand-crafted features, resulting in poorer robustness than that of convolutional neural networks.
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We compared the whole framework with five of the most important face detection algorithms on the
self-collected dataset, which are Viola-Jones(VJ) [24], single shot multibox detector(SSD) [32], multi-task
cascaded neural networks (MTCNN) [45], multi-channel shallow convolutional network(MMSC) [46],
and hybrid resolutions(HR) [47]. Figure 4 shows the results of the six methods in different situations.
VJ and MTCNN cannot detect faces correctly when the face is fairly small. MMSC uses traditional
methods to extract pre-processing regions, and thus it cannot keep good performance in detecting
faces on incomplete bodies or in relatively complex background. SSD can detect faces roughly, but it
cannot correctly obtain the bounding boxes when the faces are small. On one hand, HR can achieve
remarkable performance in detecting tiny faces when the environment is relatively simple, but when
the light is dim or faces are in a complex environment, the performance of HR would be very bad.
On the other hand, PMCD achieves the best performance among the six methods. In the case of poor
lighting conditions, only PMCD can achieve remarkable performance.

Figure 4. Face detection results.

Intersection over union (IoU) is the ratio between the intersection and the union of the candidate
bounding box predicted by the model and the ground truth bounding box. The formula is:

IoU = (area(C)∩ area(G))/(area(C)∪ area(G)) (9)

where area(C) is the area of the candidate bounding box; area(G) is the area of the ground truth
bounding box.

We collected the true positives’ IoUs which are predicted by the above five methods and calculated
the mean IoU (MIoU) to judge the accuracy of the predicted bounding boxes. The formula is shown
as follows:

MIoU =
n∑

i=1

IoUi/n, (10)

where n is the total number of true positives; IoUi is the IoU score of the i-th true positive.
The results are shown in Table 1. PMCD achieves the best performance in these six methods. The

second best is HR, no matter how small the face is, HR would be detected very precisely when the light
is good. However, when the face is in a dark environment, the face’s bounding box will be detected
with some deviation. While the performance of SSD is the lowest because SSD cannot retain its ability
when the target is small even though it can detect tiny faces, because its default anchors are set to
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different shapes, but the box shape with the highest score is not always the most suitable one. The
other three methods can get great scores only if the targets are big.

Table 1. Mean intersection over union (MIoU) on the self-collected dataset.

PMCD HR MMSC MTCNN SSD VJ

MIoU 84.8% 83.4% 76.9% 79.2% 71.2% 73.6%

In order to verify the effectiveness of PMCD, the F1 measures, where precision and recall are
equal, are shown in Table 2. The table of our model is higher than benchmark results of the other three
important face detection neural networks. The MTCNN, VJ, and MMSC cannot keep high performance
when targets are less than 20 × 20, which could result in many misclassifications. The framework
proposed in this paper can solve this problem very well because we use two neural networks for
grading detection, which can avoid the subjectiveness of hand-crafted features. In addition, the
pre-identification mechanism can avoid the information loss of small targets, which often happens in a
deep neural network.

Table 2. The F1 measures of different methods.

VJ MTCNN MMSC SSD HR PMCD

F1 measures 0.32 0.554 0.569 0.602 0.673 0.712

In addition, we tested the detection speed of these methods based on frames per second (FPS),
and the results are shown in Table 3. Although PMCD is not the fastest method, it still exceeds 24 FPS,
maintaining real-time performance. PMCD is designed as a cascade framework, in which some time
is wasted in passing data, that is, the end-to-end detectors can outperform cascade frameworks in
detection speed. Nevertheless, for the tiny-face detection task, the advantages of the cascaded detector
are obvious.

Table 3. Detection speed of different methods.

VJ MTCNN MMSC SSD HR PMCD

FPS 1.2 32.8 3.9 43.2 2.6 34.6

5. Conclusions and Future Works

A real-time pre-identification mechanism and a cascaded detector were proposed for tiny-face
detection in this paper. We combined pedestrian detection with face detection to reduce the search
region. After obtaining the bounding box of the pedestrian, we estimated the face area as RoI based on
the proportion of the size of the bounding box. The mechanism not only can improve efficiency but
also reduce the number of false positives. After that, we built an image pyramid as the input of the
face detector. The algorithm can ensure the performance of the face detector on the targets of different
sizes. Based on the experimental results, the proposed cascaded neural network is more efficient in
tiny-face detection than other state-of-the-art methods.

There are many open studies in the above research. Our method is constrained, but when the
body is not completely occluded, PMCD can perform better in tiny-face detection under extreme
conditions such as poor light and occlusion, etc. Traditional face detection methods and region-based
CNNs cannot keep a high accuracy in tiny-face detection by themselves, but it is possible to combine
these unconstrained methods with our proposed framework in the future. The highest priority
should be given to this framework to avoid unnecessary false positives and reduce the miss rate of
tiny-face detection.
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As mentioned in Section 1, cascade frameworks have significant advantages in detecting tiny
faces, and the experimental results also support this conclusion in Section 4. This is because the
characteristics of tiny faces are gradually lost with convolutional layers going deeper. Therefore,
this problem can be solved by finding a larger upper-body to complete the coarse-to-fine detection.
PMCD has achieved remarkable results on our self-collected dataset when the targets are small or in
extreme environments such as darkness, complex background, occlusion, etc. When the targets are of
normal sizes, the end-to-end detection frameworks can obtain a faster speed. Therefore, PMCD still
has potential for further improvement. In the future, we will design an end-to-end detection network
based on PMCD, which can internally extract hierarchical features for the face detection task. This
network can ensure satisfactory performance on tiny-face detection while keeping a faster detection
speed than PMCD.
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