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Abstract: In the past decades, the electrocardiogram (ECG) has been investigated as a promising
biometric by exploiting the subtle discrepancy of ECG signals between subjects. However, the heart rate
(HR) for one subject may vary because of physical activities or strong emotions, leading to the problem
of ECG signal variation. This variation will significantly decrease the performance of the identification
task. Particularly for short-term ECG signal without many heartbeats, the hardly measured HR makes
the identification task even more challenging. This study aims to propose a novel method suitable
for short-term ECG signal identification. In particular, an improved HR-free resampling strategy is
proposed to minimize the influence of HR variability during heartbeat processing. For feature extraction,
the Principal Component Analysis Network (PCANet) is implemented to determine the potential
difference between subjects. The proposed method is evaluated using a public ECG-ID database that
contains various HR data for some subjects. Experimental results show that the proposed method is
robust to HR change and can achieve high subject identification accuracy (94.4%) on ECG signals with
only five heartbeats. Thus, the proposed method has the potential for application to systems that use
short-term ECG signals for identification (e.g., wearable devices).

Keywords: ECG identification; short-term ECG signals; HR-free resampling strategy; principal
component analysis network; ECG-ID

1. Introduction

Biometric systems play an important role in security applications and have been deployed around
the world in past decades. Currently, common used biometrics in practice include face, fingerprint, iris,
etc. However, neither can these biometrics effectively avoid being stolen, nor are they robust enough
to falsification. For instance, with finger marks left behind on objects, crackers can recreate fingerprint
using latex; Iris images can be captured in a few meters distance and falsified by using contact lenses
with copied iris feature printed on [1]; Biometric systems utilizing facial recognition can be easily fooled
by high-resolution still photos. In recent years, it has been observed that electrocardiogram (ECG) is a
significant signature for individuals even within siblings or twins [2]. Unlike other biometrics, ECG is
an inner signal, whose presence automatically ensures the liveness [3,4]. This property makes ECG far
more difficult to be stolen or falsified.

The ECG signal is the recording of periodic variation with heart beating. A heartbeat represents
one period of the ECG signal, which conveys rich identity information and is an important sign
for subject identification. However, visual interpretation of beats is difficult because the changes
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in amplitude and duration are subtle. To deal with this problem, pattern recognition methods are
preferred in ECG identification due to their reliable, quick, and objective analysis.

Within the last decade, many methods, based on neural networks [5,6], support vector machine [7],
and k-nearest neighborhood [8] have been proposed in literature for the purpose of automatic
identification. The literature [9] presented a recurrent neural network (RNN)-based method, which
could achieve automatic feature extraction, to improve the identification performance on ECG signals
from both the same session and different sessions. Discrete wavelet transform was used to extract
wavelet coefficients as the feature vector and KNN was applied as the classifier in literature [10].
A novel automatic ECG identification approach combining back propagation neural network (BP-NN)
with Frequency Rank Order Statistics (FROS) was introduced to distinguish different subjects in the
literature [11]. The literature [12] utilized neural networks to both identify QRS complex segments and
perform user authentication on these segments. All these methods mainly focus on the development
of the part of feature extraction and classification. By properly combing the approaches of feature
extraction with improved classifiers, these methods have achieved good performance. However, it is
noted that most of them are evaluated on signals with stable heart rate (HR). Actually, there are the
variation of ECG signals of one person due to HR change. For example, HR increase will shorten the
duration of the ventricular depolarization period, leading to T wave shift. In other ECG applications,
such as atrial fibrillation (AF) [13], the HR variability can be used to distinguish the AF episode from
normal sinus rhythm. However, in ECG biometric, this variation will result in low identification task
and make the identification become far more difficult without appropriate processing [14].

To overcome this limitation, a popular method is to normalize QT interval according to correction
formulas. For example, Lugovaya et al. [15] scaled the ST-fragment based on Framingham and Bazett’s
formulas. Francesco et al. [16] preferred to use a different formula based on the suggestion presented
by Tawfik in [17]. Besides methods based on QT correction, Kiran et al. [18] also proposed an effective
feature extraction depending on the characteristic points, which were P, Q, R, S, and T. By taking
less HR related parameters as features, this method was least affected by HR change. However,
the performance of these above methods depends on the accurate localization of wave boundaries
for QT interval estimation or HR measurement. Though the R and T wave detection techniques
have started to provide acceptable results in most cases, detecting P, Q, and S is still challenging [19].
Furthermore, HR measurement of ECG signals requires multiple ECG signals and may not be desirable
for systems that use short-term ECG signals for identification. Thus non-fiducial or partial-fiducial
identification methods should be investigated.

To solve this problem, Wonki Lee et al. [20] proposed a novel partial-fiducial method, whose idea
was that one heartbeat was resampled and mapped into a regular interval by ignoring temporal period
information. Taking a pattern matching algorithm based on Euclidean distance as the classifier, they
achieved a maximum performance of 98.36% accuracy using finger ECG data. However, according
to the research of Mikhail Matveev1 et al. [21], QRS negative area, total area, slope from R to S peak
and sum of the absolute QRS velocities values have a strong correlation between ECG recordings
acquired 5 years apart. These features will be distorted during the resampling process proposed by [20],
hindering a further increase of identification accuracy. Identification performance can be potentially
improved by appropriately reserving the original information of the QRS complex.

The aim of this study is to propose an HR robust ECG identification method suitable for short-term
ECG signals. Our work contains two main parts: (1) On the basis of the research of reference [20], we
propose a QRS-centered resampling strategy for heartbeat processing. The method aims to completely
preserve the original temporal and morphological information of the QRS complex while solving the
problem of T wave shift. As a result, more potentially helpful information with less HR influence
will be provided for the subsequent steps; (2) For feature extraction, Convolution Neural Network
(CNN) has proven its effectiveness in medical research such as health informatics and computed
tomography image analysis in recent years [22–25], e.g., Acharya et al. [22] conducted a CNN study for
automatic arrhythmia detection and recorded accuracy, sensitivity and specificity of 92.50%, 98.09%,
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and 93.13%, respectively, for two seconds of ECG segments. In our work, Principal Component
Analysis Network (PCANet) proposed by Tsung-Han Chan et al. [26], a new kind of CNN that
employs PCA to learn multistage filter banks, is adopted as the tool to mine more useful components
from the processed heartbeats. By using PCA filters as the convolution kernel, this network is sensitive
to the local difference among heartbeats from different subjects. At last, a linear Support Vector
Machine (linear-SVM) is used to address the identification for faster training and classification.

The rest of this paper is organized as follows: Section 2 illustrates the proposed methodology;
Database and experimental results are shown in Section 3; the results of our approach are discussed in
Section 4; and Section 5 concludes the paper.

2. Methods

The whole proposed identification process is mainly composed of five parts: (1) preprocessing;
(2) HR variability removal; (3) feature extraction; (4) beat identification; and (5) subject identification.
Figure 1 depicts the diagram of the ECG identification methodology proposed in this paper.
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Figure 1. Diagram of electrocardiogram (ECG) identification methodology proposed.

2.1. Preprocessing

Denoising: Multiple factors will interfere with the quality of the ECG signal. The origins of
interference are usually various. For example, during the acquisition of ECG signals, power-line
interference generates because of the frequency influence of the used power. Interference will display in
the form of noise and distort the waveform of ECG signals, leading to the decrease of ECG identification
performance. Real raw ECG signals contain three major noise, namely, baseline drift, power-line
interference and Electromyogram (EMG) artifact. Generally, the frequency of baseline drift is less
than 0.5 Hz [27] and that of power-line interference is 50 Hz (or 60 Hz) [28]. While EMG artifact is a
random noise that spreads over the entire frequency range [29]. In this paper, wavelet transform (WT)
is employed as the de-nosing method due to its property of sparsity, locality and multi-resolution [30].
The wavelet-based de-noising process is summarized as follows: Raw signals are decomposed to
9 levels by lifting wavelet transform with wavelet db4; Obtained detail coefficients of different levels
are thresholded by shrinkage (soft) strategy; Reconstructing the original sequence from the thresholded
wavelet detail coefficients leads to removal of noise. Here the shrinkage strategy uses the universal
‘VisuShrink’ threshold given by [31]:

Thr = σ
√

2 log(N) (1)
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where N is the number of data points and σ represents the estimated noise level, which is obtained
according to [32]:

σi =
median(|ωi|)

0.6745
(2)

where σi is the noise level of the i-th level and median(x) can output the median value of input
sequence x. The functions lwt, wthresh, and ilwt in MATLAB were employed as the method for wavelet
decomposition, coefficient thresholding and signal reconstruction respectively. Figure 2 shows the
comparison between the original signal and the denoised signal.
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Figure 2. Comparison between the original signal and the de-noising signal.

Segmentation: After denoising, the R and T peak detection task is performed on denoised signals
by using the ECGPUWAVE tool box [33]. Then the detected peak points at T are taken as the delimiters
for segmentation. Figure 3 shows a beat extracted in the T-T way. It can be seen that the beat starts
with its former T peak and ends with its own T peak. The duration is exactly a cardiac cycle.
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2.2. QRS-Centered Resampling Strategy

As mentioned above, an ECG signal can be segmented into several heartbeats. Comparison of
original and processed heartbeats is shown in Figure 4. Figure 4a shows several beats extracted by
taking T peaks as delimiter. It is noted that even beats α, β, and γ, which comes from the same subject,
do not have the same ECG waveform pattern. This nonstandard format cannot satisfy the requirement
of subsequent pattern matching, thus framing an arbitrary length of beat into a regular interval of the
same length is necessary.
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Figure 4. Comparison of heartbeats with different resampling manners. (a) Original heartbeats; (b)
Heartbeats with direct resampling; (c) Normalization progress of the QRS-centered resampling; and (d)
Heartbeats processed by the proposed method.

Generally, resampling-process [34] can provide a sufficient way for format standardization.
Heartbeats with direct resampling can be seen in Figure 4b. It is noted that QRS waveforms of beats α,
β, and γ are similar to each other, but locate in different positions on the beats. Beat ϕ has a different
QRS waveform from the above three, but its position is similar to α. As a result, it is likely found
that the similarity measurements among α, β, and γ are larger than that between α and ϕ, leading the
following decision to an opposite result.

To solve this problem, a QRS-centered resampling strategy is proposed in this section. Based
on the research of [5,20,21], our idea is that any temporal and morphological information of the QRS
complex may potentially contribute to ECG identification. Meanwhile, only the amplitude is useful
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in identifying a subject for the rest part. Thus, we remain QRS complex original to preserve all QRS
information and resample the rest part to correct T wave shift by ignoring its temporal information.
Figure 4c shows the proposed normalization progress. In our strategy, each heartbeat is considered as
three parts, namely, the first part, the QRS part and the third part. The first part is from the start-point of
beat to the start-point of the QRS part; the QRS part is centered on the detected R point and has unified
50 points; the third part is from the end-point of the QRS part to the end-point of beat. The process of
the proposed strategy is summarized as follows: Firstly, considering that the QRS duration of a healthy
subject is generally 60~100 ms, a 50-point width window (the digitalized frequency of ECG-ID is 500
Hz and 100 ms corresponds to 50 points on this database) centered on R point is used to determine
boundaries of three parts on heartbeats; Then extracted QRS parts are aligned centered on R peaks;
Lastly, resampling process is utilized to normalize the first and third part both to 175 points. Extracted
beats with our strategy can be seen in Figure 4d. The morphology of beat α, β, and γ, becomes more
similar to each other, and shows a significant difference from beat ϕ at the same time. The function
resample of MATLAB is employed as the method for resampling.

2.3. PCANet

Principal Component Analysis Network (PCANet) is a simple deep learning method to extract
high-level features from the original input. Unlike traditional deep learning networks such as
Convolution Neural Network (CNN) or Deep Belief Network (DBN), it does not need complicated
iterative process for numerous parameters optimization. Only a few network parameters are necessary
for determining a PCANet. Once these parameters are fixed, training the PCANet will be extremely
simple and efficient. Figure 5 shows the structure of PCANet for ECG feature extraction. Code
implementation of PCANet is available on [35].
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2.3.1. Normalization

Given a heartbeat sample x processed by QRS-centered resampling strategy, it should be
normalized before feature extraction. Here, we use min-max normalization to realize this process.
The function of mapminmax in MATLAB is employed as the method for normalization.
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2.3.2. Input Layer

The main function of the input layer is to fold the normalized heartbeat vectors into matrices,
which are suitable for the use in the convolution process of PCANet. Assume the normalized heartbeat
vector x∗ = [x∗1 , x∗2 , x∗3 , · · · , x∗mn], its specific folding process can be seen in Equation (3):

[x∗1 , x∗2 , x∗3 , · · · , x∗mn]→



x∗1 , x∗2 , · · · , x∗n
x∗n+1, x∗n+2, · · · , x∗2n

...
...

...
...

x∗(m−2)n+1, x∗(m−2)n+2, · · · , x∗(m−1)n
x∗(m−1)n+1, x∗(m−1)n+2, · · · , x∗mn


(3)

where mn is the number of sampling point in the heartbeat vector. In this paper, since the dimension of
nomalized heartbeat is 400, we set both m and n to 20. The function of reshape in MATLAB is employed
as the method for folding.

2.3.3. The First Stage (PCA)

In this stage, we firstly use a k1 × k2 patch to scan one heartbeat matrix with step 1 to collect its
all patches. Then we make each patch subtract the mean of all patches and obtain all mean-removal
patch matrices of the heartbeat matrix. By constructing the same matrix for N heartbeat matrices and
combining them, we get their combination Y.

Then we perform Principal Component Analysis (PCA) on the combination Y. In this way,
principal eigenvectors which are ordered based on the decrement of the corresponding eigenvalues
can be obtained. By selecting the first L1 principal eigenvectors and respectively reconstructing them
to matrices with size k1 × k2, we can get the PCA filter bank of the first convolution layer. Equation (4)
shows the specific process:

W1
l = matk1k2(ql(YYT)) ∈ Rk1×k2 , l = 1, 2, · · · , L1 (4)

where W1
l is the l-th PCA filter of the first convolution layer, YYT is the covariance matrix of Y, ql()

extracts the l-th principal eigenvector of YYT , and matk1,k2() maps the extracted principal eigenvector
to a matrix W ∈ Rk1×k2 .

2.3.4. The Second Stage (PCA)

After obtaining PCA filters of the first layer, we can get the filter output by doing convolution on
the heartbeat matrix and PCA filter W1

l . Then the solution process of PCA filter banks in the second
stage is just the same as that in the first stage. We firstly scan the first layer output using a patch with
size k1 × k2 and collect a series of patches. Then the patch mean is subtracted from each patch and the
mean-removed patches of the l-th filter output of all heartbeat matrix are combined together to obtain
patch matrix. For all of the filter, their patch matrices are concatenated to get combination Ỹ. The PCA
filters of the second stage are then obtained as shown in Equation (5):

W2
` = matk1,k2(q`(ỸỸT)) ∈ Rk1×k2 , l = 1, 2, · · · , L2 (5)

where W2
` is the `-th PCA filter of the second convolution layer, ỸỸT is the covariance matrix of Ỹ, q`()

extracts the `-th principal eigenvector of ỸỸT , and matk1,k2() maps the extracted principal eigenvector
to a matrix W ∈ Rk1×k2 . For each input of the second stage, one will output L2 matrices of size m× n.
The specific computation process is doing convolution on the input and its corresponding filter in the
second stage.
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2.3.5. Output Stage

After the second stage, obtained outputs are firstly binarized by a Heaviside function. By this
function, value in outputs will be 1 for positive entries and 0 otherwise. Then we convert the L2

outputs back into a single integer-valued matrix by Equation (6):

Γl
i =

L2

∑
`=1

2`−1H(yl
i ∗W2

` ) (6)

where yl
i means the output of l-th filter for the i-th heartbeat matrix yi in the first layer. Here weights

of the outputs are irrelevant since each integer is treated as a distinct “word”. After coding, each
integer-valued matrix Γl

i is partitioned into B blocks with a set overlapping ratio υ and histogram block
size η. We compute the histogram of the values in each block and concatenate all B histograms into
one vector which is denoted as Bhist(Γl

i). The feature of input heartbeat vector is lastly defined to be
the set of block-wise histograms as shown in Equation (7):

fi = [Bhist(Γ1
i ), · · · , Bhist(ΓL1

i )]
T
∈ R(2L2 )L1B (7)

where fi is the learned feature representation which can be used in following classification.
The detailed information of network parameter setting can be seen in Table 1.

Table 1. Detailed parameter information of PCANet used for ECG identification.

Steps Project Parameter

Input Heartbeat matrix size 20 × 20
The first stage Patch size (k1 × k2) 7 × 7

The number of filters of the first stage (l) 8
The second stage Patch size (k1 × k2) 7 × 7

The number of filters of the second stage (`) 8
Output Histogram block size (η) 7 × 7

Block overlap ratio (υ) 0.5

2.4. Classifier

Several classifiers such as K-Nearest Neighbors (KNN), Back propagation neural network
(BP-NN), Random Forest (RF), Naive Bayes and Support Vector Machines (SVM) are implemented
and compared. The detail of these classifiers is presented below.

2.4.1. K-Nearest Neighbor (KNN)

In pattern recognition, k-nearest neighbor algorithm is a common method used for both
classification and regression. It is a type of instance-based learning, or lazy learning. It does not
attempt to construct a general model, but simply stores instances of the training data. Classification is
computed from a simple majority vote of the nearest neighbors of the instance to be predicted. A query
instance is assigned the data class which has the most representatives within the nearest neighbor of
the instance. Here, we used Euclidean distance as our distance metric. In our experiment, the best
result of classification was achieved for K = 3. KNN can be realized by the function ClassificationKNN.fit
in MATLAB.

2.4.2. Back Propagation Neural Network (BP-NN)

BP-NN is a multilayer feed forward network trained with error back propagation strategy. It is
firstly proposed by Rumelhart [36] and has been extensively used at present. In this paper, we used a
typical three-layer BP-NN as classifier to classify the extracted features, and the number of units in
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the hidden layer was set to 50. The function patternnet in MATLAB was employed as the method for
BP-NN implementation.

2.4.3. Random Forest (RF)

A random forest model [37] is a collection of k decision trees. Here, cart classification trees, which
divide attributes based on the Gini index, are developed with different numbers of inputs to form
an RF. The classification is determined by the voting results of all decision trees, and the highest
ranked class is selected as the final label of a new instance. In our experiment, the best classification
results occurred when k was set to 500. RF model was implemented by using the function TreeBagger
in MATLAB.

2.4.4. Naive Bayes Classifier

Naive Bayes classifier is one of the simplest machine learning algorithms, being also fast and easy
to implement. It is a probabilistic classifier based on applying Bayes’ theorem with strong independence
assumptions between the features, and has proven to work surprisingly well in practice. In this work,
a Naive Bayes classifier using Bernoulli distribution was adopted for heartbeat identification. Code
implementation of Naive Bayes classifier is available on [38].

2.4.5. Support Vector Machines (SVM)

Support Vector Machine (SVM) is one of the state-of-the-art classifiers which can split a dataset
into two or more categories. By using a function called kernel, support vector machine can transform
the input samples into a higher dimensional space and classify them linearly. In this paper, since
features extracted by PCANet are high-dimensional and sparse, we adopt a linear kernel support
vector machine (linear-SVM) according to [25]. Linear-SVM can be realized by freely available Liblinear
toolkit [39]. During the use of Liblinear, parameter C known as error penalty factor, which expresses
the tolerance to error, was set to 1 for good performance of classifier.

2.5. Signal Identification

With the features extracted by PCANet, linear-SVM can output the identification result of each
beat. To get the label of a whole signal, we make beats of the same signal vote. According to the results,
the class with maximum number of votes is selected as the class label of the estimated signal.

3. Results

3.1. Database

We use the challenging ECG-ID database [15], which is available on the PhysioNet, to evaluate
our proposed method. The database is chosen because it includes more than two recordings for some
of its subjects. All recordings in this database are acquired in lead I and digitalized at 500 Hz over
a duration of 20 s. Unlike such databases as Massachusetts Institute of Technology-Biotechnology
arrhythmia database (MIT-BIH-AHA), whose signals have stable HR, the HR of signals in the ECG-ID
is various. Different emotional or physical conditions and acquisition over a large domain of time
make it provide a platform for use of ECG as person identification in real world scenarios. In the
experiments, we select the same 12 subjects as reference [18] and each subject has five recordings for
training and testing purposes. Table 2 shows the detail information of each recording, including its
contained heartbeat number and estimated HR. HR is estimated as follows:

HR = (Heartbeat Number)/(Signal Duration) ∗ 60 (8)

here since the signal duration is 20 s, HR is three times as much as contained Heartbeat Number.
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Table 2. Heart number & estimated heart rate (HR) of used signals for experiments.

Subject Number
Heartbeat Number & Estimated Heart Rate (beat/min)

Record-1 Record-2 Record-3 Record-4 Record-5

3 25 75 25 75 24 72 23 69 23 69
10 28 84 27 81 28 84 33 99 24 72
24 24 72 25 75 25 75 21 63 18 54
25 24 72 24 72 23 69 19 57 23 69
30 23 69 24 72 21 63 21 63 19 57
32 22 66 22 66 23 69 24 72 23 69
34 31 93 30 90 27 81 29 87 30 90
36 19 57 20 60 23 69 25 75 23 69
52 25 75 26 78 28 84 29 87 31 93
53 26 78 27 81 27 81 30 90 27 81
59 25 75 28 84 33 99 21 63 20 60
72 24 72 25 75 20 60 37 111 34 102

3.2. Experimental Setup

1. Experiment 1

As KNN, BP-NN, RF, Naive Bayes, and Linear-SVM have been widely used, these methods were
implemented for evaluating the performance of the extracted features. To convincingly estimate the
proposed method, two of the five ECG signals from the subject were combinatorially selected as the
training set, and the remaining three were utilized as the testing set. As a result, each experiment was
repeated ten (C2

5) times.

2. Experiment 2

In Experiment 2, the HR robustness was evaluated by comparing the proposed method with other
five methods. During identification, all the six methods had the same denoising and fiducial point
detection process, and the difference among them was the manner of heartbeat resampling and feature
extraction. Six methods are shown in Table 3, where “Y” indicates adoption and “N” indicates none.
In heartbeat resampling manner, “QRS-centered” represents the proposed novel resampling strategy,
and the meaning of “TT” and “TRT” is explained below.

Table 3. Six Methods with different resampling strategy and feature extraction manner.

Main Operating TT-CNN TRT-CNN QRS-CNN TT-PCANet TRT-PCANet Proposed
Method

Heartbeat
Resampling Manner

TT Y N N Y N N
TRT N Y N N Y N

QRS-centered N N Y N N Y

Feature Extraction
CNN Y Y Y N N N

PCANet N N N Y Y Y

“TT”-resampling: Segmented heartbeats with different sizes are directly resampled to 400 sample
points without alignment of R points. This manner just performs a forced alignment of T wave points,
ignoring all temporal period and morphological information of heartbeats.

“TRT”-resampling: R and T points of segmented heartbeats are aligned, and divide each heartbeat
into two parts: T-R and R-T. Then both T-R and R-T part are resampled to 200 to obtain the unified size
as in Method 1. Compared with Method 1, this method further performs alignment of key fiducial
points (R). It is firstly proposed by reference [20] and has proved its effectiveness on heart robustness
without requiring HR measurement. All the experiments are repeated 10 times.

Here the architecture of the used traditional CNN is shown in Table 4.
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Table 4. Detailed parameter information of traditional Convolution Neural Network (CNN) used for
ECG identification.

Layers Type Number of Neurons (Output Layer) Kernel Size Stride

0–1 Convolution 16 × 16 × 6 5 × 5 1
1–2 Max-pooling 8 × 8 × 6 2 × 2 2
2–3 Convolution 4 × 4 × 12 5 × 5 1
3–4 Max-pooling 2 × 2 × 12 2 × 2 2

3. Experiment 3

To evaluate the effectiveness of the proposed method on short-term ECG signals, original signals
in test set were segmented into hundreds of fragments with three schemes, in which a single fragment
contained one, three and five heartbeats respectively. Based on these obtained short-term ECG
segmentation, the subject identification accuracies were achieved and compared.

4. Experiment 4

To further validate the proposed method, the experimental results of reference [18] were compared
with ours in Experiment 3. Many performance parameters such as sensitivity, specificity, precision, and
F1-score were calculated and compared based on the obtained confusion matrix. For fair comparison
we followed the same data distribution as reference [18], in which only Record-1 and Record-2 of each
subject were employed as the training set.

5. Experiment 5

Further validation was performed by comparing the results of different methods in reference [9],
namely, RNN, Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM), with that of
our method. Following reference [9], we evaluated the proposed method on two public databases,
which were ECG-ID and MIT-BIH Arrhythmia database (MITDB). Here, the used subject number
of ECG-ID database increased from 12 to 89. The MITDB is a patient information database, which
contains 47 subjects and can be employed to evaluate the proposed method on the level of patient.
For each subject of the MITDB, five fragments of 18-heartbeat length, which were recorded at different
time, were randomly extracted for training and testing purpose. Thus a five-fold cross validation could
be performed for evaluation.

All the above experiments were made in MATLAB 2017a (MATLAB, 2017a, MathWorks, Natick,
MA, USA).

3.3. Experimental Results

3.3.1. Experiment 1

Figure 6 gives the comparison of different classifiers fed by features extracted using the proposed
method. Related to Figure 6, the features extracted by the QRS-centered resampling strategy and
PCANet could produce high heartbeat and subject identification accuracy of 83.14% and 94.72% even
with the simplest classifier KNN. Meanwhile, all the other classifiers could yield heartbeat accuracy
over 85% and subject identification accuracy over 95%. The obtained results demonstrated that the
extracted features could reflect the difference between different subjects, and were effective for ECG
identification. In our subsequent experiments, we selected Linear-SVM as the classifier not only
because its performance was better compared with other classifiers, but also because it is more suitable
for dealing with the extracted high-dimensional features.
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3.3.2. Experiment 2

Figure 7 shows the results of average heartbeat and subject identification accuracy of 10 experiments
with six different methods, which are TT-CNN, TRT-CNN, QRS-CNN, TT-PCANet, TRT-PCANet, and
the proposed method. Here the subject identification accuracy was obtained after all heartbeats of each
signal voted. With TT-CNN and TT-PCANet, the average heartbeat (subject) identification rates were
71.51% (89.44%) and 77.22% (89.72%), respectively. They had the worst performance among the tested
methods since it preserved the least information during heartbeat processing. The average accuracies
increased to 77.86% (93.88%) and 85.93% (95.27%) with TRT-CNN and TRT-PCANet, in which the R
point alignment was additionally taken into account. The proposed method and QRS-CNN showed
performance of 83.44% (94.4%) and 89.41% (97.78%), respectively. It was found that when the feature
extraction manner was set, methods with the proposed QRS-centered resampling strategy obtained the
best heartbeat and subject identification, indicating that the preservation of the temporal period and
morphological information of the QRS did benefit for identification accuracy. Also when compared
with the CNNs, the PCANets achieved better performance using different heartbeat resampling
manner. Furthermore, the CNNs (6c-2s-12c-2s) used in our work needed complicated iterative process
for 468 (5 × 5 × 6 + 6 + 5 × 5 × 12 + 12 = 468) parameters optimization, while the number of PCANets
parameters is six (k1, k2, l, `, η, υ) here. Based on the results, we confirmed that our proposed method
could achieve good performance under HR variability conditions.
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3.3.3. Experiment 3

Table 5 shows the variation of average subject identification accuracy with respect to different-length
signals during ECG identification using six methods. Compared with the other five methods, higher
identification accuracies were achieved by the proposed method under different conditions. The results
also showed that the proposed method was able to get high accuracy over 94% even with signals of
only five-heartbeat length. Nevertheless, for the rest methods, ECG signals should contain far more
heartbeats to make the methods obtain the same accuracy. Generally, the goodness of a heartbeat
based method in short-term ECG signal identification is mainly measured by the single heartbeat
identification accuracy. Our method gave higher heartbeat identification accuracy of 89.41% on signals
than the other five methods, which suggested that our method could provide an efficient way for
short-term ECG identification [40,41].

Table 5. The comparison of subject accuracies among short-term ECG signals with different heartbeat length.

Method ECG Length
(in Number of Heartbeats)

Average Subject Identification
Accuracy (10 Experiments)

TT-CNN 1 71.51%
TT-CNN 3 77.57%
TT-CNN 5 85.22%

TT-PCANet 1 77.22%
TT-PCANet 3 80.85%
TT-PCANet 5 85.82%
TRT-CNN 1 77.86%
TRT-CNN 3 83.46%
TRT-CNN 5 87.71%

TRT-PCANet 1 85.93%
TRT-PCANet 3 90.28%
TRT-PCANet 5 91.96%

QRS-CNN 1 83.44%
QRS-CNN 3 88.96%
QRS-CNN 5 91.89%

Our Method 1 89.41%
Our Method 3 92.49%
Our Method 5 94.40%

3.3.4. Experiment 4

In this section, we compared the experimental results of [18] with ours to further validate the
proposed method. Many performance parameters mentioned in [18] were calculated and compared
based on the confusion matrix. The evaluation parameters include Accuracy, Sensitivity, Specificity,
Precision and F1-score. The calculation process is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Sensitivity = Recall =
TP

TP + FN
(10)

Speci f icity =
TN

TN + FP
(11)

Precision =
TP

TP + FP
(12)

F1Score =
2 ∗ Precision ∗ Recall

Precison + Recall
(13)

where TP, TN, FP, and FN, respectively represent True Positive, True Negative, False Positive, and
False Negative. Since subject identification is a multi-class problem, this paper uses the overall statistic
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of the above indicators to evaluate the performance. The general calculation form of different overall
statistics is as follows:

Overall_X =
N

∑
i=1

Xi/Nperson (14)

where Nperson is the total number of evaluated person and Xi represents the statistic result of the i-th
person (Xi can be Accuracy, Recall, Specificity, Precision, or F1-score).

Table 6 shows the confusion matrix for the true classification of ECG beats used for testing the
proposed method. The confusion matrix shows the number of beats used for the test with their
corresponding True Positive Rate (TPR).

Table 6. Confusion matrix of true classification of ECG beat data of person.

Target Class
Classification Class

Accuracy
3 10 24 25 30 32 34 36 52 53 59 72

3 19 0 1 0 0 1 0 0 0 0 0 0 90.48%
10 0 19 0 0 0 0 0 0 0 0 2 0 90.48%
24 3 1 16 1 0 0 0 0 0 0 0 0 76.19%
25 0 0 0 21 0 0 0 0 0 0 0 0 100%
30 0 0 0 0 21 0 0 0 0 0 0 0 100%
32 0 0 0 0 0 21 0 0 0 0 0 0 100%
34 2 0 0 1 0 0 18 0 0 0 0 0 85.71%
36 0 2 0 0 0 0 0 17 0 0 2 0 80.95%
52 0 0 0 0 0 0 0 0 21 0 0 0 100%
53 0 0 0 0 0 0 0 0 0 21 0 0 100%
59 0 0 0 0 0 0 0 0 1 0 17 3 80.95%
72 0 1 0 0 0 0 0 0 0 0 7 13 61.90%

With all heartbeats voting, we can obtain the result of subject identification. Table 7 shows the
confusion matrix which includes the number of signals used for testing with their corresponding
subject TPR. Based on the confusion matrices of heartbeat and subject identification, the evaluation
parameters can be calculated and the results of comparison can be seen in Table 8.

Table 7. Confusion matrix for true identification of person.

Target Class
Classification Class

Accuracy
3 10 24 25 30 32 34 36 52 53 59 72

3 3 0 0 0 0 0 0 0 0 0 0 0 100%
10 0 3 0 0 0 0 0 0 0 0 0 0 100%
24 0 0 3 0 0 0 0 0 0 0 0 0 100%
25 0 0 0 3 0 0 0 0 0 0 0 0 100%
30 0 0 0 0 3 0 0 0 0 0 0 0 100%
32 0 0 0 0 0 3 0 0 0 0 0 0 100%
34 0 0 0 0 0 0 3 0 0 0 0 0 100%
36 0 0 0 0 0 0 0 3 0 0 0 0 100%
52 0 0 0 0 0 0 0 0 3 0 0 0 100%
53 0 0 0 0 0 0 0 0 0 3 0 0 100%
59 0 0 0 0 0 0 0 0 0 0 3 0 100%
72 0 0 0 0 0 0 0 0 0 0 2 1 33.33%

In the comparison of our method with seven beats and [18], our method showed improvement on
all evaluation indicators. Results showed that the overall heartbeat and subject identification accuracy
could reach 88.8889% and 99.0741%, respectively. In terms of specificity, we achieved a prediction
success average rate reaching 99.4949% and exceeding 95% for each person. Relative to the results of
the previous method, our accuracy, precision, and F1-score were all at a high level.
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Table 8. Comparison of our method with seven beats and literature [18].

S. No Performance Parameter Value [18] Value (Our Method)

1 True_Positive Rate (Beat Identification) 80.5556% 88.8889%
2 True_Positive Rate (Subject Identification) 88.8889% 94.4444%
3 Overall_Accuracy 98.1481% 99.0741%
4 Overall_Recall 88.8889% 94.4444%
5 Overall_Specificity 98.9899% 99.4949%
6 Overall_Precision 93.750% 96.6667%
7 Overall_F1 Score 88.5317% 93.7500%

3.3.5. Experiment 5

The goal of this experiment is to compare the results of our method with that of reference [9],
which is one of the state-of-the-art methods for ECG identification. Table 9 shows the comparison
between reference [9] and the proposed method.

Table 9. Comparison of the proposed method with reference [9] (SI-Subject Identification, HI-Heartbeat Identification).

Methods

ECG-ID: 89 MIT-BIH: 47

ECG Length
(in Number of Heartbeats) SI ECG Length

(in Number of Heartbeats) SI

RNN [9] 18 91.7% 18 93.3%
GRU [9] 18 94.4% 18 95.7%
LSTM [9] 18 100% 18 100%

Proposed method 18 97.75% 18 100%
Proposed method 7 95.25% 7 97.85%
Proposed method 5 92.36% 5 97.80%
Proposed method 3 89.97% 3 96.96%
Proposed method 1 84.50% 1 90.45%

Results on Table 9 show that LSTM network performs better than GRU and traditional RNN
in terms of the subject identification accuracy, and that our approach behaves similar to the LSTM
network. On the databases, ECG-ID, and the MITDB, subject identification accuracies of 97.75% and
100% were achieved. Besides that, the proposed method could achieve high heartbeat identification
accuracy of 84.5% and 90.45% on ECG-ID database and the MITDB, which made it possible to
obtain good performance based on short-term signals. For ECG-ID and the MITDB, 95.25% and
97.85% subject identification accuracy were obtained even with signals of only seven-heartbeat length.
Especially, the subject identification accuracy of signals of three-heartbeat length could reach 96.96%
on the MITDB.

These results further proved the effectiveness of our method for short-term ECG signal identification.
Table 10 shows the state-of-the-art methods proposed for ECG biometric identification. Compared

with other methods, the proposed method achieves high-level results in terms of subject identification
accuracy on both databases, which suggests that it can serve as an effectively partial-fiducial way for
ECG biometric identification.
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Table 10. Performance comparison with state-of-the-art works (SI-Subject Identification).

Methods Year Feature Extraction (Type) Decision ECG Dataset Performance

Page et al. [12] 2015 QRS complex segments (Fiducial) NN ECG-ID: 90 SI: 99.93%

Dar et al. [40] 2015 Haar Transform/GBFS
(Non-fiducial) KNN ECG-ID: 90

MIT-BIH: 47
SI: 83.2%
SI: 95.9%

Dar et al. [10] 2015 Haar Transform and HRV/GBFS
(Non-fiducial) Random Forest ECG-ID: 90

MIT-BIH: 47
SI: 83.9%
SI: 93.1%

Dhou-ha et al. [41] 2016
21 temporal and amplitude features
and 10 morphological descriptors

(Fiducial)
SVM MIT-BIH: 44 SI: 98.8%

Tan et al. [42] 2017 Temporal, amplitude, and angle fid.
+ DWT coefficients (Fiducial)

Random
Forests +

WDIST KNN

ECG-ID: 89
MIT-BIH: 47

SI: 100%
SI: 100%

Yu et al. [43] 2017 PCA (Non-fiducial) RPROP ECG-ID: 89 SI: 96.60%

Lynn et al. [44] 2018 Temporal and amplitude features
(Fiducial) BP-NN

ECG-ID: 3
10
20

SI: 98.24%
SI: 96.20%
SI: 94.00%

Zhao et al. [45] 2018 Generalized S-transformation
(Non-fiducial) CNN ECG-ID:50 SI: 96.63%

Mahmoud et al. [46] 2018 Mean P-QRS-T fragment + DWT
(Fusion of fiducial and non-fiducial) SVM ECG-ID: 90

MIT-BIH: 47
SI: 99%

SI: 100%

Proposed Method - QRS-centered resampling strategy +
PCANet (partial-fiducial) Linear-SVM

ECG-ID: 12
89

MIT-BIH: 47

SI: 97.78%
SI: 97.75%
SI: 100%

4. Discussion

In this work, a novel HR robust method for short-term ECG biometric identification was
developed. Raw ECG signals were filtered with wavelet denoising and segmented into heartbeats by
taking the detected T peak points as delimiters. Then the heartbeat was processed by the proposed
QRS-centered resampling strategy and standardized to 400 sampling points. The QRS-centered strategy
is inspired and based on the prior ECG identification works: Firstly, to our knowledge, all the existing
literature about ECG identification has taken QRS complex or its related form as features and QRS
complex is very important for identifying a person [9,10,12,18,40–46]. To preserve all potential identity
information of the QRS complex, we use a length-fixed window to keep the QRS complex original.
Secondly, it is also found that mapping the heartbeat into a regular interval of segments does help to
deal with the HR variability problem [5,20]. Thus, we segment the heartbeat into three parts, which are
the first, the QRS and the third part respectively, and unify them. In this way, the extracted heartbeat
can correct T wave shift without using traditional QT correction formula, and contain sufficient
information of QRS such as QRS negative area, amplitude, and so on at the same time. As a result, HR
variability is removed and more potential information is provided for the subsequent steps, which is
beneficial for the identification accuracy.

After that, PCANet was implemented to learn discrimination among heartbeats from different
persons by taking the principal eigenvectors as filter banks. PCANet can be analyzed by comparing it
with the Convolutional Neural Network (CNN): Like CNN, the PCANet also has convolution filter
bank in each stage; the binary quantization of the PCANet at the output stage performs similar function
like the nonlinear layer in CNN; the pooling layer of the PCANet is set to be the block-wise histograms
of binary codes. In fact, PCANet can be essentially considered as a CNN model, which has strong
capability of feature extraction [26,47,48].

Moreover, the PCANet seems to be more likely to achieve better performance than traditional
CNN in ECG biometric identification, especially for ECG data without outlier correction. As we all
know, ECG is not a strict periodic signal, and local distortions and variation on heartbeats may appear
even without HR variability. Traditional CNN may be influenced by these distortions because its
convolutional filter bank is learned in a data-adapting way. Compared with traditional CNN, the filter
bank of the PCANet is prefixed by analyzing the main difference between subjects based on the
combination of patch matrices of the training data. This learning way gives more holistic observations
of the original ECG data, and the learned intra-invariance can essentially capture more identification
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information [26,47,48]. According to our experimental results, the PCANets did obtain much higher
heartbeat identification than the CNNs with different heartbeat resampling manner, which further
proved that the PCANet method was robust to distortions.

Compared with other methods in literature, our method has two main advantages. First, the method
is HR robust and does not require HR based QT correction. HR variability can be removed under
short-term ECG signal condition and avoid the complex operations of accurate Q detection or HR
measurement. Based on the experiments, it is found that not only the amplitude, but also the temporal and
morphological information of QRS can potentially contribute to identification, which is in accordance with
other studies [5,20,21]. Second, the proposed method can achieve high heartbeat identification accuracy,
which makes it suitable for systems that use a small quantity of heartbeats to make a decision [49]. Besides
that, the naturality of PCANet makes our work easy to be reproduced by other researchers. Because
compared with traditional neural networks (CNN), only a few parameters are required to determine a
PCANet [25,26,48].

In the future, we will explore the “other class” classification problem. “Other class” refers to the
class that classifier has not yet trained and it is totally different from the other trained individuals
morphologically. In ECG identification, we can also call it unknown individual. The classification of
the unknown individual is an open-set problem and can hardly be solved by some simple methods
such as threshold setting [50] or distance matching [51]. So our next stage research is to improve our
existing identification architecture and realize “other class” recognition.

5. Conclusions

In this paper, we propose a novel HR robust method for short-term ECG signal identification.
In this study, we identified ECG signals by using the QRS-centered resampling strategy and the
PCANet. To evaluate the effectiveness of our algorithm, the experiment was performed on ECG
fragments with different length and various HRs. Experimental results revealed that this QRS-centered
resampling strategy could efficiently remove the influence of HR variability and the PCANet was
able to capture important information required for class discrimination from processed heartbeats.
Compared with the existing state-of-the-art methods, the proposed approach provides an effectively
partial-fiducial way for identification and shows comparative results on both ECG-ID database and
the MITDB. Our method is expected to contribute to information security and privacy protection.
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