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Featured Application: The proposed periocular biometric network can apply to any application
that requires identity management, such as homeland security, border controls, access control,
criminal investigation, etc.

Abstract: Periocular recognition remains challenging for deployments in the unconstrained
environments. Therefore, this paper proposes an RGB-OCLBCP dual-stream convolutional
neural network, which accepts an RGB ocular image and a colour-based texture descriptor,
namely Orthogonal Combination-Local Binary Coded Pattern (OCLBCP) for periocular recognition
in the wild. The proposed network aggregates the RGB image and the OCLBCP descriptor by
using two distinct late-fusion layers. We demonstrate that the proposed network benefits from
the RGB image and thee OCLBCP descriptor can gain better recognition performance. A new
database, namely an Ethnic-ocular database of periocular in the wild, is introduced and shared for
benchmarking. In addition, three publicly accessible databases, namely AR, CASIA-iris distance and
UBIPr, have been used to evaluate the proposed network. When compared against several competing
networks on these databases, the proposed network achieved better performances in both recognition
and verification tasks.

Keywords: periocular recognition in the wild; convolutional neural network; colour-based local
binary coded pattern

1. Introduction

Biometric systems have been widely deployed since the late 1990s worldwide for identity
management, banking, homeland security, etc. [1]. Among different biometric systems, face recognition
enjoys flexibility, availability, and user-friendly [2]. However, biometrics experts and the police
departments of the United States have agreed that the face recognition technology remains challenging
after the “Boston Marathon bombings” in 2013 [3]. For instance, the appearances of subjects such as
cosmetic products, plastic surgery or wearing masks may cause the failure of identifying the suspects.
To hinder the complexity of the facial region, periocular recognition is gaining attention these days
attributed to its promising recognition performance [4].

What does periocular refer to? According to the definition in [5], periocular defines the region
around the eyes, which includes the eyelids, eyelashes, and eyebrows (see Figure 1). The periocular
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region demonstrates more tolerance of variability in expression and occlusion, such as crime scene
where perpetrators intentionally mask part of their faces. This creates more capability of matching
partial faces [6,7]. In addition, due to the rapid growth of camera use in social networks, surveillance,
and smartphones, this arguably increases the interest of periocular recognition [8,9]. For all these
reasons, periocular recognition has become an area of intense study in the biometrics and computer
vision communities.

Periocular regions

Figure 1. Samples of periocular regions. We demonstrate sample images of the periocular region that
including eyebrows. The images are collected from The Korea Times [10] and Kitchen Decor [11].

In this paper, we address the challenges of periocular recognition in the unconstrained or “in-the-
wild” environments that remain not well-addressed by the current works [12,13]. This challenge
is associated with the issue of dissimilarities in periocular images due to the placement of sensors,
pose alignments, illumination levels, occlusions, etc. Thus, we study this problem by means of
a fusion approach with dual-stream Convolutional Neural Network (CNN), which accepts RGB ocular
image and a novel colour-based texture descriptor, known as Orthogonal Combination-Local Binary
Coded Pattern (OCLBCP). We have also developed and shared a new database, namely Ethnic-Ocular
database, by collecting the periocular region images in the wild to validate the proposed network.

1.1. Related Works

The early study on periocular biometrics presented in [5] shows promising results in human
recognition. The authors adopted several handcrafted descriptors such as Histogram of Oriented
Gradients (HOG), Local Binary Patterns (LBP) and Scale-Invariant Feature Transform (SIFT) as
periocular feature representation, followed by the score fusion for classification. Fernandez et al. [14]
and Cao et al. [15] also introduced a similar approach, which convolves periocular features extracted
from HOG or LBP feature matrix with Gabor filters and followed by score fusion. There are several
research articles focused on combinations of texture descriptors with fusion algorithm for periocular
representation and recognition [16–20]. All these approaches are mainly focused on amalgamation of
various handcrafted texture descriptors and followed by learning machines for decent performances
in periocular recognition. However, these approaches are less robust to “in the wild” variations
such as resolutions, levels of illumination, poses, and occlusions due to inadequacy and inflexibility
of handcrafted texture descriptors in representing periocular features. Therefore, the periocular
recognition in the wild remains a challenge.

In recent years, CNNs have gained escalating attention in image classification [21,22]. CNNs can
be used to extract image texture features from different layers while handcrafted texture descriptor
are only limited to low-level features, which is equivalent to the first convolutional (conv) layer
features of CNNs. Apart from conv layers at different level, the features can be extracted from
max pooling (maxpool) and fully-connected (fc) layers of CNNs. Several researchers have employed
CNNs for periocular recognition. For instance, Gangwar et al. [23] proposed two CNNs (for left and
right oculars), namely DeepIrisNet, which extracts comprehensive information to boost recognition
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performance. Other studies, e.g., by Proença et al. [24] and Zhao et al. [25], have demonstrated
enhanced CNN frameworks for periocular recognition where the prior knowledge is exploited to
discard unnecessary information. Proença et al. [24] suggested removal/separation of the iris and
sclera from the periocular regions, while Zhao et al. [25] identified the critical regions (only included
eyebrow and eye region) that can extract more discriminative information to improve periocular
recognition. However, these networks were found to underperform when there are misalignments of
periocular images, images missing the eyebrows and images missing ocular.

The relevant works that deal with non-ideal ocular are those by Zhang et al. [26] and
Soleymani et al. [27]. Zhang et al. [26] fused iris and periocular modalities through a weighted
concatenation. The network achieved significant results when compared to other CNNs. Similarly,
Soleymani et al. [27] invented a new multimodal CNN, namely multi-fusion CNN, where the iris,
face and fingerprint features are fused at fc layer. A fusion layer is designed to fuse different levels of
fc layers as multi-feature representations with the sole RGB image. However, these works leveraged
several biometrics where all of them may not always be available such as occluded face with mouth
covered or iris from a distance. Furthermore, the use of multiple biometrics modality may jeopardise
the usability of the system such as fingerprint and iris need cooperation from the users.

In the previous work of CNN that consumes face texture descriptor, Levi et al. [28] demonstrated
the use of colour-based LBP descriptor as input to CNN rather than raw RGB face image for emotional
recognition. The authors showed that colour-based texture descriptor is useful to train their network
in the wild environment. This work motivates us to investigate and analyse the impact of colour-based
texture descriptor within CNN for periocular recognition in the wild.

1.2. Motivation and Contributions

In the early days of periocular recognition, the problems were mostly concerned about what was
the best way to handle periocular in the presence of illuminations, pose alignments, and occlusions [5,6].
Many periocular databases were built using carefully controlled images for each of these issues.
UBIPr [12], CASIA-iris database [29], and MICHE database [30] are the most comprehensive efforts in
this direction and created in a well-controlled environment.

Presently, the challenges of periocular recognition concern about images that having large
variations due to in the wild environments, such as ageing, appearances, cameras location,
level of illuminations, occlusions, pose alignments, and others [18,31]. In addition, many existing
databases [12,13,29,30] and research communities [18,23,27] still yet to prepare for periocular
recognition in the wild challenge. Especially, the appearances of periocular with cosmetic products,
and plastic surgery can affect the recognition performance negatively.

This paper offers a solution for periocular recognition in the wild by investigating the fusion of
RGB periocular images and a novel texture descriptor, i.e., OCLBCP, by means of a dual-stream CNN.
OCLBCP exploits the colour information in the periocular texture to better represent the periocular
features for recognition in the wild. The two networks share the parameters and a late fusion takes
place at the last conv layer before fc layer.

For validation of the proposed network, a new database is introduced, namely Ethnic-ocular,
by collecting the periocular region images in the wild setup. The databased includes five ethnic
groups: African, Asian, Latin American, Middle Eastern, and White. The database is created in such a way
that each ethnic group has a unique shape of periocular and skin texture of periocular regions [32].
Therefore, the database avoids unbalanced selection, as there are differences in the configuration of
oculars among different ethnicities.

Hence, the contributions of this paper are as follows:

• To study complementarity between CNN and input features, we investigate and analyse the
combination of RGB image and a novel texture descriptor, namely OCLBCP for periocular
recognition in the wild.
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• Two distinct late-fusion layers are introduced in the proposed CNN. The role of the
late-fusion layers is to aggregate the RGB image and OCLBCP descriptor. Hence, the proposed
two-stream CNN is beneficial from these new features of the late-fusion layers to deliver better
accuracy performance.

• A new periocular in the wild database, namely Ethnic-ocular, is created and shared in [33].
The images were collected across highly uncontrolled subject–camera distances, appearances,
resolutions, locations, levels of illumination, and so on. The database includes training and testing
schemes for performance analysis and evaluation.

The paper is organised as follows: Section 2 describes the structure of the proposed colour-based
Orthogonal Combination-Local Binary Coded Pattern (OCLBCP) texture descriptor. The proposed
network with fusion algorithm is presented in Section 3 and the detailed database information is
presented in Section 4. Section 5 discusses the experimental results and analysis. A conclusion is
summarised in Section 6.

2. Colour-Based Orthogonal Combination—Local Binary Coded Pattern

This section introduces a new colour-based texture descriptor known as Orthogonal
Combination—Local Binary Coded Pattern (OCLBCP). OCLBCP is devised based on the notion
of an orthogonal combination of Local Binary Pattern (LBP) [34] and Local Ternary Pattern (LTP) [35].
The OCLBCP descriptor yields a more vibrant texture representation since it is less sensitive to the
image noise and levels of illuminations.

Let Ip ∈ Rx×y be the periocular grayscale image, where x and y are the width and height of Ip,
respectively. The apparent changes in the images are related to illuminations and poses, thus we
deploy the pre-processing method used in [36] to reduce the noise from Ip. First, we transform the
Ip into Fourier domain as Z. Furthermore, we apply the Butterworth filter (B) to Z by reducing
the illumination noise and enhancing the reflectance [37]. After that, we apply an inverse Fourier
transform to obtain the filtered image I′p.

To construct the OCLBCP descriptor, I′p has to be proposed first according to the LBP [34] and
LTP [35] transformation. LBP summarises the local structure in an image by comparing each pixel
with its neighbourhood [34]. This descriptor works by thresholding a neighbourhood matrix using
the grey level of the central pixel in the binary code. LTP is an extension of the LBP with three-valued
codes [35]. The descriptor works by comparing each pixel with its neighbouring pixels. Then, they
are combined after thresholding into a ternary pattern. The ternary pattern is split into two binary
patterns and called positive and negative matrices.

In this paper, the LBP consists of the 3× 3 neighbourhood matrix, and the LTP consists of the
positive and negative matrices. To do so, I′p is partitioned into sub-matrix with size 3× 3 and the
neighbourhood values of sub-matrix is binarised according to the centre value of the sub-matrix,
which serves as a reference value for thresholding. After that, the descriptor combines the sub-matrix
of LBP and LTP into four orthogonal groups: D1, D2, D3, and D4 (see Figure 2). The orthogonal groups
serve to achieve illumination invariance and uncover better texture information by removing outlying
disturbances. Specifically, to obtain D1, the bits from the yellow boxes in the LBP and the bits from
green boxes in LTP positive in Figure 2 are combined. The same processes are repeated for D2, D3,
and D4.
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Figure 2. Illustration of Orthogonal Combination–Local Binary Coded Pattern (OCLBCP).

Suppose θ is the OCLBCP descriptor, we first convert the binary codes Dk into a decimal number
Dck, k = 1, 2, 3, and 4, and then choose the largest value from all the orthogonal groups. Specifically,
the θ is formed by combining the groups as follows:

θ (i, j) = max [Dc1(i, j), Dc2(i, j), Dc3(i, j), Dc4(i, j)] , (1)

where i and j are the indices of θ.
To map θ(i, j) into a colour-based texture descriptor, we create a distance pattern matrix ∆ to

represent the similarity of the image intensity patterns across all possible pixel values based on [28]:

∆ :=


δ1,1 δ1,2 δ1,3 · · · δ1,c
δ2,1 δ2,2 δ2,3 · · · δ2,c

...
...

...
. . .

...
δr,1 δr,2 δr,3 · · · δr,c

 , (2)

where r and c are defined as the indices of δ. δr,c is calculated by Earth Mover’s Distance. After that,
teh Multi-Dimensional Scaling (MDS) algorithm is adopted to seek the mapping of ∆ to the
low-dimensional metric space (colour pattern matrixM) [38]:

M = [MDS(θ) + ‖min(MDS(θ))‖] ∗
[

255
‖max(MDS(θ))‖

]
, (3)

MDS(·) =

√
∑r ∑c f (δr,c)

$
, (4)

where $ is scale factor and f (δr,c) is a monotonic transformation function of δr,c. In this paper, we set
$ to three due to RGB channels in the colour image. Note thatM is a three-colour channels matrix
that outputs from MDS(·), which contains R, G, and B pixel values. Finally, we map θ(i, j) withM to
generate colour-based texture descriptor OCLBCP. The mapping process uses the given pixel values of
θ(i, j) to match the pixel values from the R channel ofM. After that, θ(i, j) is converted with the RGB
values fromM. Algorithm 1 summarises the process of generating OCLBCP.
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Algorithm 1 Creating colour-based texture description OCLBCP.

Input: Ip ∈ Rx×y

Output: OCLBCP
1: Perform preprocessing to Ip and obtain the filtered image I′p
2: Construct LBP and LTP process on Ip
3: Perform Equation (1) with the LBP, LTP positive and LTP negative matrices to obtain θ
4: Construct distance pattern matrix ∆ using Equation (2)
5: Generate the colour-based pattern matrixM with δ by using Equations (3) and (4)
6: Map θ withM to generate OCLBCP

3. RGB-OCLBCP of Dual-Stream CNN

We propose a dual-stream CNN that conceives the periocular RGB image and OCLBCP descriptor
as the first and second stream to the network. Note that the dual-stream CNN was originally proposed
by Feichtenhofer et al. [39] for action detection and recognition. The two input streams refer to temporal
and structural streams. In our work, the network accepts and processes periocular colour image and
texture descriptor, and then feature fusion layers are devised to extract better feature representation
for ocular recognition.

As shown in Figure 3, the architecture of the proposed network consists of 16 convolutional (conv)
layers and 8 max-pooling (maxpool) layers. The conv layers are designed to learn the correspondence
between the RGB image and OCLBCP descriptor and to discriminate between themselves with the
shared weights. Table 1 tabulates the architecture of the proposed network.
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Figure 3. The architecture of the proposed network.
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Table 1. Configurations of each layer for the proposed network.

Network Layers Configurations

conv(1)RGB, conv(2)OCLBCP f 1: 64@80 × 80; k 2: 2 × 2; maxpool: 2 × 2
conv(3)RGB, conv(4)OCLBCP f : 128@40 × 40; k: 2 × 2; maxpool: 2 × 2
conv(5)RGB, conv(6)OCLBCP f : 256@20 × 20; k: 2 × 2
conv(7)RGB, conv(8)OCLBCP f : 256@20 × 20; k: 2 × 2; maxpool: 2 × 2
conv(9)RGB, conv(10)

OCLBCP f : 512@10 × 10; k: 2 × 2
conv(11)

RGB, conv(12)
OCLBCP f : 512@10 × 10; k: 2 × 2; maxpool: 2 × 2

conv(13)
RGB, conv(14)

OCLBCP f : 512@10 × 10; k: 2 × 2
conv(15)

RGB, conv(16)
OCLBCP f : 512@10 × 10; k: 2 × 2

f latRGB, f latOCLBCP 1 × 1 × 12,800
f usemax, f usesum 1 × 1 × 4096

f c(1), f c(2) 1 × 1 × 4096
f c(3), f c(4) 1 × 1 × 4096
Ymax, Ysum 1 × 1×C

1 f refers to the size of the feature map in conv layers. 2 k is defined as the filter size.

3.1. Fusion Layers

Two fusion layers, namely f usemax and f usesum, are designed to aggregate the information from
the RGB image and OCLBCP descriptor, as shown in Figure 3. The f usemax layer takes the largest
activation from the f latRGB and f latOCLBCP layers with m nodes, where both of them are flattened to
conv(15)

RGB and conv(16)
OCLBCP, respectively. The f usemax can be represented as:

f usemax(i) = max[ f latRGB(i), f latOCLBCP(i)], i = 1, · · · , m. (5)

On the other hand, f usesum takes a sum of activations of f latRGB and f latOCLBCP. The layer is
defined as follows:

f usesum(i) = f latRGB(i) + f latOCLBCP(i), i = 1, · · · , m. (6)

3.2. Total Loss for Training

For training, we define a total loss function, Ltotal, which is composed of a summation of softmax
cross entropy L of logit vector and their respective encoded label:

Ltotal = L (Vmax) + L (Vsum) , (7)

L(V) = −
N

∑
n

C

∑
c

Lnclog[softmax(V)nc], (8)

softmax(V)nc =
expVnc

∑C
c expVnc

, (9)

where V ∈ {Vmax, Vsum}. Vmax and Vsum are defined as the features of f usemax and f usesum layers in
the training samples V, respectively. L, N, and C denote class labels, the number of training samples in
V, and the number of classes, respectively. Note that a periocular region contains left and right oculars;
we therefore train each side with separate networks (Figure 3).

3.3. Score Fusion Layer for Recognition

To recognise an unknown identity, a score fusion layer Stotal is devised to merge the distance
scores from the softmax vectors for decision-making. Let Ymax = softmax(Vmax) ∈ RC and Ysum =

softmax(Vsum) ∈ RC be the softmax vectors of f c(3) and f c(4), respectively. Since we train the
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proposed network for left and right ocular, we thus differentiate the softmax vector Y to Yleft and Yright.
Note each individual Y to Yleft and Yright is still the sum of its corresponding Y = Ymax + Ysum.

We evaluated the proposed system in two common biometric working modes: recognition and
verification. For the former, the testing data are divided into a gallery set and a probe set. Each subject
in the gallery set is composed of his/her left and right softmax vectors as YG

j = {YG
j,left, YG

j,right},
where j = 1, · · · , C; the probe set is defined as YP = {YP

left, YP
right}. The score fusion layer is computed

with the sum rule as follows:

Stotal(Y
P, YG

j ) = s(YP
left, YG

j,left) + s(YP
right, YG

j,right), (10)

where s(YP
∗ , YG

j,∗) = 1− cos(YP
∗ , YG

j,∗) is defined as cosine similarity distance and ∗ ∈ {left, right}.
To identify YP, φ is decided as follows:

φ = max
j

[Stotal(Y
P, YG

j )] (11)

Verification protocol refers to verifying a person’s identity that is claimed as a genuine or an
impostor. Let YR = {YR

leftY
R
right} as the reference set (template) and YA = {YA

leftY
A
right} as the query set,

to decide the YA is a genuine or an impostor, ζ is decided by using Equation (12) as follows:

ζ(YA, YR) =

{
1, Stotal(YA, YR) ≤ τ

0, Stotal(YA, YR) > τ
, (12)

where τ is training dataset dependence threshold value.

4. Database

A large-scale collection of periocular in the wild images from different ethnic groups was created,
namely Ethic-ocular database. This database is built for periocular recognition, which contains left
and right oculars that were extracted from 85,394 images downloaded from the web. All images
were collected in the wild, with uncontrolled subject–camera distances, poses, appearances with and
without make-up, and levels of illumination.

We propose this new database to support balanced selection in the configuration of oculars
among different ethnicities, and also to stimulate research for periocular recognition in the wild that all
periocular images are taken in common and everyday settings. Figure 4 demonstrates several samples
of images.

4.1. Collection Setup

To create our database, we selected subject names randomly from BBC News [40], CNN News [41],
Naver News [42], and FaceScrub database [43]. The subjects were randomly selected based on different
ethnicities. They mostly are celebrities, politicians, athletes, etc.

From the search result, the top 300 images for each subject were downloaded using Python scripts.
After that, the images were manually verified to ensure that the subjects correctly labelled the images.
We firstly extracted facial regions in these images by using the face detector from Matlab [44] for
periocular region extraction. Then, the coordinates of facial feature points were fixed based on the
face detector bounding box for image alignment. Then, the images of subjects were labelled manually.
After that, we implemented the technique from [45], which allowed us to crop images into left and right
oculars. The database contains 85,394 images (including left and right oculars images) of 1034 subjects.
Note that the views of these images are between −45◦ and 45◦.
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Subjects Periocular Images

Figure 4. Samples of periocular images in the wild.

4.2. Training Protocol

For the training protocol, 623 subjects were randomly selected. Note that no subjects for training
overlapped with the subjects for benchmarking. To develop or train our own models, we designed
the protocol by dividing the images for each subject with the ratio of training, testing, and validations
as 70:15:15.

4.3. Benchmark Protocol

We selected the remaining 411 subjects as benchmarks. In the benchmarking scheme, we created
recognition and verification tasks. For recognition task, images about a specific set of individuals to be
recognised (gallery set) were gathered and a new image (the probe set) was presented; the task was to
decide which of the gallery identities was represented by the probe set. In the experiments, we divided
the images per subject with the ratio of the gallery set to probe set as 50:50. This division process was
repeated three times.

For verification task, the task was to analyse two sets of periocular images and decide whether they
represent the same person or two different people. In the experiments, we randomly selected 1200 pairs
as “same” labels and 1200 pairs as “not same”. This selection process was repeated three times.

5. Experiments

We conducted several experiments to evaluate the performance comparisons of recognition and
verification between our network and other benchmark networks. All configurations of the networks
are described in Section 5.1 and the experimental results are presented in Section 5.2.

5.1. Experimental Setup

5.1.1. Configuration of Proposed Network

The proposed network was implemented using the open source deep learning toolkit
TensorFlow [46]. About the configurations, we applied an annealed learning rate and it was started
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from 1.0× 10−3. The rate was subsequently reduced by 10−1 for every 10 epochs. The minimum
learning rate was defined as 1.0× 10−5. We applied an Adam optimiser in this network, where the
weight decay and momentum were set to 1.0× 10−4 and 0.9, respectively.

In our experiments, the batch size was set to 64 and the training was carried out across 200 epochs.
The training was done by using our database and following the protocols mentioned in Section 4.2
and it was performed by an NVidia Titan Xp GPU.

5.1.2. Configuration of Benchmark Networks

We selected several deep networks to evaluate the performance of periocular recognition:
AlexNet [21], DeepIrisNet-A [23], DeepIrisNet-B [23], FaceNet [47], LCNN29 [48], Multi-fusion
CNN [27], and VGG16 [49]. Inspired by the work of Gangwar et al. [23], Soleymani et al. [27],
Schroff et al. [47], Wu et al. [48], and Hernandez et al. [50], these networks have been proven to be
successful in very large recognition tasks. In the experiments, we utilised the pre-trained models that
were provided by the authors to fine-tune and improve the networks themselves by training the left
and right oculars, respectively. In the cases of DeepIrisNet-A, DeepIrisNet-B, and Multi-fusion CNN,
the networks are not publicly available. Therefore, we did our best effort to implement these networks
from scratch by following Gangwar et al. [23] and Soleymani et al. [27], respectively.

5.2. Experimental Results

We present the experimental results on the tasks of periocular recognition and verifications by
conducting the databases on periocular recognition in the wild and controlled environments. For the
recognition, we evaluated the performance by using Cumulative Matching Characteristic (CMC)
curve with 95% confidence interval (CI). For the verification, we evaluated the performance using
Receiver Operating Characteristic (ROC) curve with Equal Error Rate (EER) and Area under the ROC
curve (AUC).

5.2.1. Performance Analysis on Proposed Network

This section analyses the robustness and performance of our network and other networks using
Ethnic-ocular database, which reports the experimental results in Table 2.

Table 2. Performance analysis on the proposed network and other networks with Rank-1 and Rank-5
recognition accuracies. The highest accuracy is highlighted in bold.

Networks Accuracy (%)
t.w. 2 flops 3

Rank-1 Rank-5

CNN 1 with RGB image 80.79 ± 1.43 90.42 ± 1.29 131.1 M 2.22 GFLOPS
CNN with OCLBCP 66.65 ± 2.22 89.73 ± 1.91 131.1 M 2.22 GFLOPS
Dual-stream CNN (using unshared weights) 82.09 ± 1.59 92.11 ± 1.32 250.8 M 1.90 GFLOPS
Proposed network 85.03 ± 1.88 94.23 ± 1.26 126.1 M 0.90 GFLOPS

1 CNN is defined as single-stream CNN; 2 t.w., total weight number; 3 flops, floating points operation.

Table 2 shows the proposed network achieved the highest Rank-1 and Rank-5 recognition
accuracies with 85.03 ± 1.88% and 94.23 ± 1.26%, respectively. As compared to CNN, this network
using the RGB image only achieved the Rank-1 and Rank-5 accuracies of 80.79 ± 1.43% and
90.42 ± 1.29%, respectively. In addition, CNN using the OCLBCP can only achieved 66.65 ± 2.22% and
89.73 ± 1.91% for Rank-1 and Rank-5 accuracies, respectively. These results indicate that our network
provides more complementary information than CNN. This leads to the proposed late-fusion layers
that significantly correlate the RGB image and OCLBCP for achieving better recognition performance.

Furthermore, we also evaluated the dual-stream CNN without using shared weights. However,
this network only achieved 82.09 ± 1.59% and 92.11 ± 1.32% at Rank-1 and Rank-5 accuracies
(see Table 2), respectively. The experimental results prove that the proposed network performed
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well with at least 2.9% improvement as compared to dual-stream CNN without using shared weight.
As can be observed, the shared conv layers and the fusion layers were utilised in the network to
aggregate the RGB image and OCLBCP. Thus, the proposed network successfully transformed new
knowledge representations to perform better recognition in the wild.

In Table 2, we also notice the space complexity (total weight number) and time complexity (flops)
of the proposed network are significantly smaller than its single network and dual-stream unshared
weights networks counterparts while still outperforming them.

5.2.2. Performance Evaluation on Recognition and Verification Tasks

We used Ethnic-ocular, as well as three public databases, the AR [51], CASIA-iris distance [29],
and UBIPr [12], to evaluate the performances of the proposed network and other benchmark networks.
All the experimental results are outlined in the following sections.

Evaluation on AR Database

The AR database is designed under a constrained environment, which consists of 117 subjects
with varying neutrals, expressions, illuminations, and occlusion conditions, who were captured across
two sessions. We opted for this database as it provides a good baseline to evaluate the robustness and
performance in constrained environments, such as different levels of illuminations and expressions in
an indoor environment. Extraction for the periocular regions was done by using the method in [45].

The experimental protocol for recognition was as follows: ten images for each subject were used
as gallery sets from Session 1 and another ten per subject as probe sets from Session 2. On the other
hand, the verification protocol was designed by randomly selecting 250 reference-query pairs as “same’
and another 250 pairs as “not same”.

Table 3 presents the performance comparisons on recognition. As can be seen in the table,
our network achieved the highest Rank-1 and Rank-5 recognition accuracies with 96.32% and 98.80%,
respectively. Likewise, DeepIrisNet-A had the best performance on Rank-1 and Rank-5 among the
other benchmark approaches, which only achieved accuracies of 95.24% and 98.38%, respectively.
Figure 5a illustrates that the proposed network outperformed other approaches with respect to all the
benchmarks from Rank-1 to Rank-10 recognition.

For the verification task, we report the experimental results in Table 4. The proposed network
also achieved the best EER and AUC with 5.13% and 0.9880, respectively. DeepIrisNet-A, Multi-fusion
CNN, and VGG16 achieved the second-best performances among the other benchmark approaches
with 7.69% for EER. Figure 5b illustrates the ROC curve and shows that the proposed network (red
solid line with diamond) outperformed the benchmark approaches.

Table 3. Performance evaluation of the recognition task on the AR database, CASIA-iris distance
database, UBIPr database, and Ethnic-ocular database. The highest accuracy is written in bold.

Networks AR CASIA-iris UBIPr Ethnic-Ocular

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

AlexNet 93.59 96.75 95.00 ± 1.8 96.98 ± 2.5 84.88 ± 2.5 96.01 ± 1.8 64.72 ± 3.3 82.98 ± 2.5
DeepIristNet-A 95.24 98.38 95.95 ± 2.1 98.15 ± 0.6 90.30 ± 1.2 97.41 ± 1.1 79.54 ± 3.1 90.43 ± 2.4
DeepIristNet-B 94.44 97.18 95.79 ± 2.6 97.75 ± 0.6 90.20 ± 1.7 97.43 ± 0.5 81.13 ± 3.1 92.37 ± 1.2
FaceNet 94.19 97.75 96.09 ± 2.1 98.10 ± 0.4 90.24 ± 1.4 97.36 ± 0.4 78.71 ± 3.7 92.19 ± 1.6
LCNN29 94.27 97.52 96.01 ± 2.0 97.85 ± 0.9 90.28 ± 1.7 97.18 ± 0.7 79.35 ± 2.6 92.17 ± 1.8
Multi-fusion CNN 96.07 98.71 95.81 ± 1.9 97.67 ± 1.0 90.75 ± 1.0 97.44 ± 0.3 81.79 ± 3.5 93.03 ± 1.3
VGG16 94.20 97.61 95.88 ± 0.1 97.99 ± 0.5 90.24 ± 1.4 97.09 ± 1.1 76.43 ± 2.2 91.29 ± 1.5
Proposed Network 96.32 98.80 96.62 ± 1.3 98.45 ± 0.4 91.28 ± 1.2 98.59 ± 0.4 85.03 ± 1.9 94.23 ± 1.3
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(a) CMC Curve (b) ROC Curve

Figure 5. Performances of recognition and verification tasks on AR database. The figures are best
viewed in colour.

Table 4. Performance evaluation of the verification task on the AR database, CASIA-iris distance
database, UBIPr database, and Ethnic-ocular database. The highest accuracy is written in bold.

Networks AR CASIA-Iris UBIPr Ethnic-Ocular

EER (%) AUC EER (%) AUC EER (%) AUC EER (%) AUC

AlexNet 14.53 0.9363 8.06 ± 5.3 0.9533 7.11 ± 2.9 0.9805 16.47 ± 1.6 0.9139
DeepIristNet-A 7.69 0.9751 7.51 ± 1.1 0.9674 5.07 ± 2.2 0.9877 8.79 ± 1.7 0.9689
DeepIristNet-B 8.12 0.9741 5.87 ± 1.5 0.9756 4.29 ± 0.9 0.9890 8.77 ± 1.1 0.9693
FaceNet 9.40 0.9692 6.10 ± 2.2 0.9738 5.46 ± 1.5 0.9870 11.67 ± 1.2 0.9489
LCNN29 9.39 0.9737 6.34 ± 1.6 0.9719 6.34 ± 2.1 0.9849 10.95 ± 1.6 0.9536
Multi-fusion CNN 7.69 0.9756 8.69 ± 1.1 0.9594 4.09 ± 2.1 0.9913 8.63 ± 1.3 0.9681
VGG16 7.69 0.9747 7.42 ± 1.7 0.9681 4.38 ± 1.3 0.9892 9.43 ± 2.5 0.9553
Proposed Network 5.13 0.9882 4.35 ± 0.5 0.9860 3.41 ± 1.8 0.9938 6.63 ± 1.5 0.9818

Evaluation on CASIA-Iris Distance Database

To evaluate whether our approach performs well on another standard database, we also tested its
performance in a more subjective experiment with CASIA-iris distance database. This database consists
of 142 subjects under a long-range subject–camera distance and indoor environment. The images were
captured by a high-resolution camera so both dual-eye iris and periocular are included in the image
region of interest. The further details of the database can be found in [29].

The experimental protocol for recognition was designed with the ratio of the gallery set to probe
set as 50:50 and the division process was repeated three times. The experimental protocol for the
verification was designed by randomly selecting 250 reference-query pairs as “same” and another
250 pairs as “not same”. This selection process was repeated three times.

According to Table 3, the proposed network achieved the highest average accuracies for Rank-1
and Rank-5 recognitions with 96.62 ± 1.3% and 98.45 ± 0.4%, respectively. Besides, FaceNet achieved
the second-best performance with 96.09 ± 2.1% and 98.10 ± 0.4% for Rank-1 and Rank-5 recognition
accuracies, respectively. We also present in Figure 6a the Rank-1 to Rank-10 recognition results. As can
be seen, our network achieved the best results among the benchmark networks.

For the verification, the proposed network achieved the lowest EER accuracy as 4.35 ± 0.5% and
AUC as 0.9860. Interestingly, DeepIrisNet-B attained second lowest performance with 5.87 ± 1.5% for
EER and 0.9756 as AUC. Figure 6b illustrates the ROC curve, which demonstrates that our network
obtained the best performance of AUC and the lowest EER. Both recognition and verification results
indicate that the proposed network is capable of learning the features of the RGB image and OCLBCP
decently for improving the performance of recognition and verification tasks.



Appl. Sci. 2019, 9, 2709 13 of 17

(a) CMC Curve (b) ROC Curve

Figure 6. Performances of recognition and verification tasks on CASIA-iris distance database.
The figures are the best to view in colour.

Evaluation on UBIPr Database

We also conducted another more challenge experiment with the UBIPr database to verify the
robustness of the proposed network. This database consists of 342 subjects with varying subject–camera
distances, levels of illumination, and poses [12]. This experiment evaluated the performance of all
the networks with varying poses and subject–camera distances. Six images from each subject were
randomly divided as a gallery set; the remaining images were used as a probe set. The division process
was repeated three times. For the verification, we randomly selected 600 reference-query pairs as
“same” and another 600 pairs as “not same”. This selection process was also repeated three times.

Table 3 presents that our network achieved the highest average Rank-1 and Rank-5 recognition
accuracies with 91.28 ± 1.2% and 98.59 ± 0.4%, respectively. The second best was achieved by
multi-fusion CNN with 90.75 ± 1.0% and 97.44 ± 0.3% as Rank-1 and Rank-5 accuracies, respectively.
Besides, Figure 7a also illustrates the CMC curve and shows that our network achieved the best
performance of recognition for all ranks.

For the verification, Table 4 reveals that our network achieved the lowest EER with 3.41 ± 1.8%
and AUC was 0.9938. This is concrete evidence to demonstrate that the proposed network can verify
the unconstrained periocular robustly. Figure 7b shows that our network outperformed most of the
benchmark networks and achieved the highest recall rate against all other approaches.

(a) CMC Curve (b) ROC Curve

Figure 7. Performances of recognition and verification tasks on UBIPr distance database. The figures
are the best to view in colour.
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Evaluation on Ethnic-Ocular Database

We present the experimental results in Table 3 by following the recognition protocol mentioned in
Section 4.3. To evaluate the performance of the proposed approach, we compared our results with
seven benchmark approaches (see Table 3). For the results of recognition, our network achieved
84.79 ± 1.9% and 94.23 ± 1.3% as Rank-1 and Rank-5 accuracies, respectively. Figure 8a illustrates
the CMC curve of the proposed network, showing that the proposed method outperformed other
benchmark methods from Rank-1 to Rank-10 recognition accuracies. The results indicate that the
late-fusion layers are capable of correlating the RGB image and OCLBCP descriptor.

Table 4 also shows that the proposed network achieved the lowest EER accuracy with 6.63 ± 1.5%
for verification. Figure 8b illustrates the ROC curve, showing that our network outperformed
all benchmark networks. The results prove that our approach can learn new features from the
late-fusion layers in order to transfer knowledge between the networks to perform better performance
of recognition.

(a) CMC Curve (b) ROC Curve

Figure 8. Performances of recognition and verification tasks on Ethnic-ocular database. The figures are
the best to view in colour.

5.2.3. Discussion

Through the experimental analysis and results, we observed that having access to the RGB image
and OCLBCP descriptor can exploit the discriminatory features as inputs for a better periocular
recognition. In addition, the proposed network utilises the colour-based texture information,
which contributes to a more robust feature representation for the challenges in recognition and
verification in the wild. This is because handcrafted texture descriptor can offer latent and complement
information for complex data learning.

By evaluating across constrained environments, our results score higher accuracies consistently.
Periocular recognition and verification in the wild bring more challenges as compared to the
constrained environment. The experimental results prove that our network is able to perform
better recognition due to its ability to learn new features from the proposed late-fusion layers.
The effectiveness of fusion layers in the network supports our assumption firmly that multi-feature
learning can work much better than just using RGB image in periocular recognition.

6. Conclusions

This paper proposed a dual-stream CNN, which accepts RGB ocular image and OCLBCP for
periocular recognition in the wild. By aggregating the RGB image and OCLBCP features into two
distinct late-fusion layers, these features offer robust and better recognition performance. We collected
and shared a new Ethnic-ocular database, which consists of a large collection of periocular images in the
wild based on different ethnic groups. Through extensive experiments by comparing against several
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competing networks on new Ethnic-ocular database and publicly available databases, the proposed
network achieved better performance in both recognition and verification tasks.

In the near future, we plan to investigate different kinds of fusion stages and fusion layers in
CNNs, which could improve the performance of multi-feature learning. Periocular recognition is futile
for subjects with “wearing sunglasses”. As a remedy, we shall incorporate the Generative Adversarial
Model, which is useful to recover the periocular area in the face image.
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