Special Issue "Recent Advances in Applied Microbiology and Food Sciences"

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Food Science and Technology".

Deadline for manuscript submissions: 31 July 2022.

Special Issue Editors

Dr. Marek Kieliszek
E-Mail Website
Guest Editor
Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
Interests: biotechnology; microbiology; selenium; biochemistry; food; yeast
Special Issues, Collections and Topics in MDPI journals
Dr. Przemyslaw Lukasz Kowalczewski
E-Mail Website
Guest Editor
Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
Interests: bioactive compounds; functional food; food texture and structure; food rheology; waste management in food system; edible insects
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Progressive changes in technology also cause changes in the methods used in food research, including microbiological aspects. The cooperation of research centers with industry is also important, as it poses new challenges to science. This Special Issue is devoted to the latest achievements in analytics, and to the application of new methods in food production technology. We welcome both original research and review articles focused on recent advanced technology in food science and microbiology, especially modern methods of the production and testing of food as well as the sustainable development of agriculture and the food industry. This topic will cover research on microbiological food ingredients and related topics such as microbial metabolites with application in food and feed as preservatives, texturants, and beneficial microorganisms; flavors; and methods to study and modify microbiota. All types of articles are welcome, such as commentaries on innovative approaches, perspectives on microbiology, and reviews of the food industry.

Dr. Marek Kieliszek
Dr. Przemyslaw Lukasz Kowalczewski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Microbiological Characteristics and Behavior of Staphylococcus aureus, Salmonella spp., Listeria monocytogenes and Staphylococcal Toxin during Making and Maturing Cotija Cheese
Appl. Sci. 2021, 11(17), 8154; https://doi.org/10.3390/app11178154 - 02 Sep 2021
Viewed by 398
Abstract
Cotija cheese is an artisanal matured Mexican cheese from unpasteurized milk. This work determined the microbiological characteristics and behavior of Staphylococcus aureus, Salmonella spp., Listeria monocytogenes and staphylococcal toxin during cheese elaboration and ripening. Sixteen 20-kg cheeses were used, eight inoculated with [...] Read more.
Cotija cheese is an artisanal matured Mexican cheese from unpasteurized milk. This work determined the microbiological characteristics and behavior of Staphylococcus aureus, Salmonella spp., Listeria monocytogenes and staphylococcal toxin during cheese elaboration and ripening. Sixteen 20-kg cheeses were used, eight inoculated with 6 log CFU/mL of each pathogen, and eight uninoculated, and samples were taken at each stage of the process. In the uninoculated samples, the survival of S. aureus and L. monocytogenes decreased after 30 days of ripening. The average counts of S. aureus in milk, curd, and serum were 7 log MPN /mL, and 8.7 log MPN /g in cheese, decreasing from day 15. Salmonella spp. counts (initial inoculum: 7.2 log MPN /mL) decreased after 24 h, and L. monocytogenes counts (8.7 log MPN/g at 24 h) decreased from day 15 in the cheese. Salmonella spp. and L. monocytogenes were not detected in any sample after 60 days of ripening, unlike S. aureus, which was detected at the end of the study. Lactic acid bacteria counts were 9 log CFU/mL in milk and whey and 7.2 log CFU/g in cheese. Pathogens behavior during the ripening process reduces the health risks by consuming products made with unpasteurized milk when subjected to ripening. Full article
(This article belongs to the Special Issue Recent Advances in Applied Microbiology and Food Sciences)
Show Figures

Figure 1

Article
The Effects of Plasma-Activated Water on Heavy Metals Accumulation in Water Spinach
Appl. Sci. 2021, 11(11), 5304; https://doi.org/10.3390/app11115304 - 07 Jun 2021
Viewed by 774
Abstract
Toxic heavy metals accumulate in crops from the environment through different routes and may interfere with biochemical reactions in humans, causing serious health consequences. Plasma technology has been assessed for the promotion of seed germination and plant growth in several past studies. Therefore, [...] Read more.
Toxic heavy metals accumulate in crops from the environment through different routes and may interfere with biochemical reactions in humans, causing serious health consequences. Plasma technology has been assessed for the promotion of seed germination and plant growth in several past studies. Therefore, the aim of the present study was to evaluate whether the growth rate of plants can be increased with the application of non-thermal plasma, as well as to reduce the accumulation of heavy metals in leafy vegetables (water spinach). In this study, several kinds of plasma treatments were applied, such as treatment on the seeds (PTS + NTW), irrigation water (NTS + PAW) or both (PTS + PAW). The results of the study showed that the heavy metals accumulated in water spinach were affected by the heavy metals available in the soil. The bioconcentration factor (BCF) of Cd in water spinach decreased from 0.864 to 0.543 after plasma treatment in seed or irrigating water, while the BCF of Pb was low and did not show any significant changes. Therefore, the results suggest that plasma treatment may suppress Cd absorption, but not for Pb. In this study, plasma treatment did not help to improve the product yield of water spinach planted in Cd-added soil. In the future, fertilizers can be used to supply nutrients that are not provided by plasma-activated water to support the growth of water spinach. Full article
(This article belongs to the Special Issue Recent Advances in Applied Microbiology and Food Sciences)
Show Figures

Figure 1

Article
Lipid Remodeling in the Mitochondria upon Ageing during the Long-Lasting Cultivation of Endomyces magnusii
Appl. Sci. 2021, 11(9), 4069; https://doi.org/10.3390/app11094069 - 29 Apr 2021
Viewed by 390
Abstract
In this study, we used Endomyces magnusii yeast with a complete respiratory chain and well-developed mitochondria system. This system is similar to the animal one which makes the yeast species an excellent model for studying ageing mechanisms. Mitochondria membranes play a vital role [...] Read more.
In this study, we used Endomyces magnusii yeast with a complete respiratory chain and well-developed mitochondria system. This system is similar to the animal one which makes the yeast species an excellent model for studying ageing mechanisms. Mitochondria membranes play a vital role in the metabolic processes in a yeast cell. Mitochondria participate in the metabolism of several pivotal compounds including fatty acids (FAs) metabolism. The mitochondria respiratory activity, the membrane and storage lipids composition, and morphological changes in the culture during the long-lasting cultivation (for 168 h) were under investigation. High metabolic activity of E. magnusii might be related to the active function of mitochondria increasing in the 96- and 168-h growth phases. Cardiolipin (CL), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sterols (St) were dominant in the membrane lipids. The St and sphingolipids (SL) shares increased by a lot, whereas the CL and phosphatidylinositol (PI) + PE ones decreased in the membrane lipids. This was the main change in the membrane lipid composition during the cultivation. In contrast, the amount of PE and phosphatidylserine (PS) did not change. Index of Hydrogen Deficiency (IHD) of phospholipids (PL) FAs significantly declined due to a decrease in the linoleic acid share and an increase in the amount of palmitic and oleic acid. There were some storage lipids in the mitochondria where free fatty acids (FFAs) (73–99% of the total) dominated, reaching the highest level in the 96-h phase. Thus, we can conclude that upon long-lasting cultivation, for the yeast assimilating an “oxidative” substrate, the following factors are of great importance in keeping longevity: (1) a decrease in the IHD reduces double bonds and the peroxidation indices of various lipid classes; (2) the amount of long-chain FFAs declines. Moreover, the factor list providing a long lifespan should include some other physiological features in the yeast cell. The alternative oxidase activity induced in the early stationary growth phase and high mitochondria activity maintains intensive oxygen consumption. It determines the ATP production and physiological doses of reactive oxygen species (ROS), which could be regarded as a trend favoring the increased longevity. Full article
(This article belongs to the Special Issue Recent Advances in Applied Microbiology and Food Sciences)
Show Figures

Figure 1

Review

Jump to: Research

Review
Nutritional and Health Potential of Probiotics: A Review
Appl. Sci. 2021, 11(23), 11204; https://doi.org/10.3390/app112311204 - 25 Nov 2021
Viewed by 256
Abstract
Several products consist of probiotics that are available in markets, and their potential uses are growing day by day, mainly because some strains of probiotics promote the health of gut microbiota, especially Furmicutes and Bacteroidetes, and may prevent certain gastrointestinal tract (GIT) [...] Read more.
Several products consist of probiotics that are available in markets, and their potential uses are growing day by day, mainly because some strains of probiotics promote the health of gut microbiota, especially Furmicutes and Bacteroidetes, and may prevent certain gastrointestinal tract (GIT) problems. Some common diseases are inversely linked with the consumption of probiotics, i.e., obesity, type 2 diabetes, autism, osteoporosis, and some immunological disorders, for which the disease progression gets delayed. In addition to disease mitigating properties, these microbes also improve oral, nutritional, and intestinal health, followed by a robust defensive mechanism against particular gut pathogens, specifically by antimicrobial substances and peptides producing probiotics (AMPs). All these positive attributes of probiotics depend upon the type of microbial strains dispensed. Lactic acid bacteria (LAB) and Bifidobacteria are the most common microbes used, but many other microbes are available, and their use depends upon origin and health-promoting properties. This review article focuses on the most common probiotics, their health benefits, and the alleviating mechanisms against chronic kidney diseases (CKD), type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), and obesity. Full article
(This article belongs to the Special Issue Recent Advances in Applied Microbiology and Food Sciences)
Show Figures

Figure 1

Review
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms
Appl. Sci. 2021, 11(9), 4020; https://doi.org/10.3390/app11094020 - 28 Apr 2021
Viewed by 798
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In [...] Read more.
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations. Full article
(This article belongs to the Special Issue Recent Advances in Applied Microbiology and Food Sciences)
Show Figures

Figure 1

Back to TopTop