Extraction of Galactolipids from Waste By-Products: The Feasibility of Green Chemistry Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Supercritical Fluid Extraction (SFE)
2.3. Ultrasound-Assisted Extraction (UAE)
2.4. Analysis of Galactolipid Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Galactolipids in Processing By-Products
3.2. Supercritical Fluid Extraction (SFE)
3.3. Ultrasound-Assisted Extraction (UAE)
3.4. Comparison of the Techniques and General Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hölzl, G.; Dörmann, P. Structure and function of glycoglycerolipids in plants and bacteria. Prog. Lipid Res. 2007, 46, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.P. Galactolipids as potential health promoting compounds in vegetable foods. Recent Pat. Food Nutr. Agric. 2009, 1, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Weatherby, K.; Carter, D. Chromera velia: The missing link in the evolution of parasitism. Adv. Appl. Microbiol. 2013, 85, 119–144. [Google Scholar] [PubMed]
- Wang, R.; Furomoto, T.; Motoyama, K.; Okazaki, K.; Kondo, A.; Fukui, H. Possible anti-tumor promoters in Spinacia oleracea (spinach) and comparison of their contents among cultivars. Biosci. Biotechnol. Biochem. 2002, 66, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuriyama, I.; Musumi, K.; Yonezawa, Y.; Takemura, M.; Maeda, N.; Iijima, H.; Hada, T.; Yoshida, H.; Mizushina, Y. Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. J. Nutr. Biochem. 2005, 16, 594–601. [Google Scholar] [CrossRef]
- Gruenwald, J.; Uebelhack, R.; Moré, M.I. Rosa canina—Rose hip pharmacological ingredients and molecular mechanics counteracting osteoarthritis—A systematic review. Phytomedicine 2019, 60, 152958. [Google Scholar] [CrossRef]
- Warholm, O.; Skaar, S.; Hedman, E. The effects of a standardized herbal remedy made from a subtype of Rosa canina in patients with osteoarthritis: A double-blind, randomized, placebo—controlled clinical trial. Curr. Therap. Res. 2003, 64, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Larsen, E.; Kharazmi, A.; Christensen, L.P.; Christensen, S.B. An antiinflammatory galactolipid from Rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. J. Nat. Prod. 2003, 66, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Zábranská, M.; Vrkoslav, V.; Sobotníková, J.; Cvačka, J. Analysis of plant galactolipids by reversed-phase high-performance liquid chromatography/mass spectrometry with accurate mass measurement. Chem. Phys. Lipids 2012, 165, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.S.; Abert-Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Mena-García, A.; Ruiz-Matute, A.I.; Soria, A.C.; Sanz, M.L. Green techniques for extraction of bioactive carbohydrates. Trends Anal. Chem. 2019, 119, 115612. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- de Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Brunner, G. Supercritical fluids: Technology and application to food processing. J. Food Eng. 2005, 67, 21–33. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Marszałek, K.; Skąpska, S. Extraction of phenolic compounds from sour cherry pomace with supercritical carbon dioxide: Impact of process parameters on the composition and antioxidant properties of extracts. Sep. Sci. Technol. 2016, 51, 1472–1479. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Marszałek, K.; Skąpska, S.; Jędrzejczak, R. The application of supercritical carbon dioxide and ethanol for the extraction of phenolic compounds from chokeberry pomace. Appl. Sci. 2017, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, Ł.; Szakiel, A.; Pączkowski, C.; Marszałek, K.; Skąpska, S.; Kowalska, H.; Jędrzejczak, R. Extraction of triterpenic acids and phytosterols from apple pomace with supercritical carbon dioxide: Impact of process parameters, modelling of kinetics, and scaling-up study. Molecules 2018, 23, 2790. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, Ł.; Połaska, M.; Marszałek, K.; Skąpska, S. Photosensitizing furocoumarins: Content in plant matrices and kinetics of supercritical carbon dioxide extraction. Molecules 2020, 25, 3805. [Google Scholar] [CrossRef]
- Lee, S.J.; Song, Y.; Chung, M.Y.; Kim, I.H.; Kim, B.H. Isolation and compositional analysis of galactoglycerolipids from perilla [Perilla fructescens (L.) Britton] leaves and comparison to the galactoglycerolipids from spinach and parsley. J. Food Sci. 2020, 85, 4271–4280. [Google Scholar] [CrossRef]
- Chrubasik, C.; Wiesner, L.; Black, A.; Müller-Ladner, U.; Chrubasik, S. A one-year survey on the use of a powder from Rosa canina lito in acute exacerbations of chronic pain. Phytother. Res. 2008, 22, 1141–1148. [Google Scholar] [CrossRef]
- Iijima, H.; Musumi, K.; Hada, T.; Maeda, N.; Yonezawa, Y.; Yoshida, H.; Mizushina, Y. Inhibitory effect of monogalactosyldiacylglycerol, extracted from spinach using supercritical CO2, on mammalian DNA Polymerase activity. J. Agric. Food Chem. 2006, 54, 1627–1632. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Li, Y.; Ye, D.; Yuan, L.; Sun, Y.; Han, D.; Hu, Q. Solid Matrix-Supported supercritical CO2 enhances extraction of γ-linolenic acid from the cyanobacterium Arthrospira (Spirulina) platensis and bioactivity evaluation of the molecule in zebrafish. Mar. Drugs 2019, 17, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekrasov, E.V.; Tallon, S.J.; Vyssotski, M.V.; Catchpole, O.J. Extraction of lipids from New Zealand fern fronds using near-critical dimethyl ether and dimethyl ether-water-ethanol mixtures. J. Supercrit. Fluids 2021, 170, 105137. [Google Scholar] [CrossRef]
- Welton, T.; Reinchardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Wienheim, Germany, 2003. [Google Scholar]
- Da Porto, C.; Natolino, A. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chem. 2018, 137–143. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Sergio, C.S.A.; Santos, P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. J. Food Eng. 2017, 198, 36–44. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C. Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds. Chem. Eng. Res. Des. 2020, 156, 1–12. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A.; Park, Y. Controlling lipid bioavailability through physiochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 2009, 49, 48–67. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Pellegrini, N. An integrated look at the effect of structure on nutrients bioavailability in plant foods. J. Sci. Food Agric. 2019, 99, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MGDGs | ||||
Time (min) | Water | Methanol | ||
0 | 25% | 75% | ||
80 | 0% | 100% | ||
90 | 0% | 100% | ||
95 | 25% | 75% | ||
DGDGs | ||||
Time (min) | Water | Acetonitrile | Methanol | |
0 | 35% | 65% | 0% | |
50 | 0% | 80% | 20% | |
60 | 0% | 0% | 100% | |
80 | 0% | 0% | 100% | |
85 | 35% | 65% | 0% |
Material | Total Content of MGDGs (mg kg−1) | Content of GOPO (mg kg−1) | Total Content of DGDGs (mg kg−1) | Dry Mass Content (%) |
---|---|---|---|---|
apple pomace | 1.0 ± 0.4 | ≤0.1 | 0.5 ± 0.2 | 27.4 ± 0.3 |
carrot pomace | ≤0.1 | ≤0.1 | ≤0.1 | 22.3 ± 0.4 |
rosehip pomace | 56.4 ± 1.1 | 41.0 ± 1.5 | 3.2 ± 0.3 | 24.6 ± 0.4 |
broccoli wastes | 24.2 ± 1.2 | 1.2 ± 0.2 | 14.3 ± 0.7 | 13.5 ± 0.7 |
fava bean wastes | 1.9 ± 0.5 | ≤0.1 | 1.2 ± 0.2 | 43.2 ± 0.2 |
potato wastes | ≤0.1 | ≤0.1 | ≤0.1 | 31.1 ± 0.2 |
Temperature (°C) | Cosolvent (mL min−1) | MGDGs Yield (mg kg−1 of Sample) |
---|---|---|
35 | 0.0 | ≤0.1 a |
35 | 0.2 | 22.7 ± 3.1 b |
35 | 0.4 | 48.8 ± 2.5 c |
55 | 0.0 | ≤0.1 a |
55 | 0.2 | 20.9 ± 2.5 b |
55 | 0.4 | 49.2 ± 2.0 c |
75 | 0.0 | ≤0.1 a |
75 | 0.2 | 21.4 ± 1.3 b |
75 | 0.4 | 47.9 ± 1.6 c |
Solvent | Relative Polarity [25] | Sonicated | Control |
---|---|---|---|
hexane | 0.009 | ≤0.1 a | ≤0.1 a |
toluene * | 0.099 | 2.2 ± 0.3 b | 1.5 ± 0.2 |
methyl t-butyl ether * | 0.124 | 8.5 ± 0.5 d | 7.2 ± 0.2 |
ethyl acetate * | 0.228 | 11.5 ± 0.8 e | 9.5 ± 0.4 |
chloroform * | 0.265 | 34.1 ± 1.6 h | 28.6 ± 0.7 |
dichloromethane * | 0.309 | 32.9 ± 1.0 h | 27.8 ± 0.5 |
acetone * | 0.355 | 14.3 ± 0.1 f | 11.7 ± 0.6 |
acetonitrile * | 0.460 | 9.0 ± 0.4 d | 7.1 ± 0.3 |
isopropanol * | 0.546 | 7.2 ± 0.1 c | 6.2 ± 0.3 |
ethanol * | 0.654 | 15.2 ± 0.4 g | 13.0 ± 0.2 |
methanol * | 0.762 | 14.6 ± 0.7 fg | 11.9 ± 0.6 |
water | 1.000 | ≤0.1 a | ≤0.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, Ł.; Wojciechowska, M.; Marszałek, K.; Skąpska, S. Extraction of Galactolipids from Waste By-Products: The Feasibility of Green Chemistry Methods. Appl. Sci. 2021, 11, 12088. https://doi.org/10.3390/app112412088
Woźniak Ł, Wojciechowska M, Marszałek K, Skąpska S. Extraction of Galactolipids from Waste By-Products: The Feasibility of Green Chemistry Methods. Applied Sciences. 2021; 11(24):12088. https://doi.org/10.3390/app112412088
Chicago/Turabian StyleWoźniak, Łukasz, Monika Wojciechowska, Krystian Marszałek, and Sylwia Skąpska. 2021. "Extraction of Galactolipids from Waste By-Products: The Feasibility of Green Chemistry Methods" Applied Sciences 11, no. 24: 12088. https://doi.org/10.3390/app112412088
APA StyleWoźniak, Ł., Wojciechowska, M., Marszałek, K., & Skąpska, S. (2021). Extraction of Galactolipids from Waste By-Products: The Feasibility of Green Chemistry Methods. Applied Sciences, 11(24), 12088. https://doi.org/10.3390/app112412088