You are currently viewing a new version of our website. To view the old version click .
  • Tracked forImpact Factor
  • 2.9CiteScore
  • 21 daysTime to First Decision

AppliedChem

AppliedChem is an international, peer-reviewed, open access journal on all aspects of applied chemistry published quarterly online by MDPI.

All Articles (122)

Proteins are essential biological macromolecules that play key regulatory roles in all biological processes. Abnormalities in these processes are often reflected in proteins, manifesting as changes in their structure, sequence, folding state, stoichiometry, or spatial and temporal distribution. Proteins serve as biological targets for drugs and other therapeutics and can also function as therapeutic agents to restore normal biological functions by treating diseases. Hence, it is essential to study native protein species, their modifications, higher-order structures, and complexes, which can be extremely difficult due to the challenges in preserving their native conditions and the instrumental capability required for such analysis. High-resolution mass spectrometry (HRMS) instruments provide advanced technical capabilities to study intact protein species from their gas phase ions after the protein solution is sprayed into the mass spectrometers. However, there are debates about the gas-phase protein structures obtained through mass spectrometry and the resemblance to their biological native state. This review discusses various techniques for isolating, separating, and enriching intact protein species for their native mass spectrometry (nMS) analysis. Emerging technologies, such as automated sample preparation, ion mobility spectrometry, and ambient surface mass spectrometry, are briefly discussed. This review aims to serve as a general guideline for beginners, primarily focusing on the preanalytical strategies and critical instrument parameters for nMS analysis of intact proteins, proteoforms, protein complexes, and higher-order structures.

18 November 2025

Charge state distributions of carbonic anhydrase under native (A) and denaturing (B) electrospray ionization conditions (ESI). © American Chemical Society, reprinted with permission [55].

Exploring the Potential of Cupriavidus metallidurans and Ochrobactrum anthropi for 241Am Bioaccumulation in Aqueous Solution

  • Leandro Goulart de Araujo,
  • Tania Regina de Borba and
  • Rafael Luan Sehn Canevesi
  • + 3 authors

This study explores, for the first time, the bioaccumulation of americium-241 (241Am) by Cupriavidus metallidurans and Ochrobactrum anthropi, two bacterial strains previously investigated mainly for their interactions with other heavy metals and radionuclides. To the best of our knowledge, no prior studies have reported the use of these microorganisms for 241Am removal from aqueous solutions. The effects of initial 241Am concentration and solution pH on removal performance were evaluated through batch experiments. Kinetic analyses were performed using pseudo-first-order (PFO) and pseudo-second-order (PSO) models, with the PSO model providing a better fit, suggesting chemisorption as the rate-limiting step in the process. Initial 241Am concentrations ranged from 75 to 300 Bq mL−1, and both bacterial strains demonstrated comparable maximum bioaccumulation capacities of approximately 1.5 × 10−8 mmol g−1. However, O. anthropi exhibited superior resistance to 241Am, maintaining colony growth at activity levels up to 1200 Bq mL−1, compared to a threshold of 400 Bq mL−1 for C. metallidurans. These findings highlight the robustness and efficiency of these bacterial strains—particularly O. anthropic—in removing 241Am from liquid radioactive waste, offering promising implications for bioremediation technologies.

11 November 2025

Growth curves of Ochrobactrum anthropi (black squares) and Cupriavidus metallidurans (red circles). Error bars represent the standard deviation from triplicate measurements.

Lithium-ion batteries (LIBs) are vital for modern energy storage applications. Lithium iron phosphate (LFP) is a promising cathode material due to its safety, low cost, and environmental friendliness compared to the widely used nickel manganese cobalt oxide (NMC), which contains hazardous nickel and cobalt compounds. However, challenges remain in enhancing the performance of LFP cathodes due to their low electronic and ionic conductivity. To improve both the safety and sustainability of the battery, this work presents a water-based LFP cathode utilizing the bio-based binder carboxymethyl cellulose (CMC), eliminating the need for polyvinylidene fluoride (PVDF) and the toxic solvent N-methyl-2-pyrrolidone (NMP). This study investigates the impact of different dispersing methods—dissolver mixing and wet jet milling—on slurry properties, electrode morphology, and battery performance. Slurries were characterized by rheology, particle size distribution, and sedimentation behavior, while coated and calendered electrodes were examined via thickness measurements and scanning electron microscopy (SEM). Electrochemical performance of the electrodes was evaluated by means of C-Rate testing. The results reveal that dispersing methods significantly influence slurry characteristics but marginally affect electrochemical performance. Compared to dissolver mixing, wet jet milling reduced the median particle size by 39% (ΔD50 = 3.1 µm) and lowered viscosity by 96% at 1 s−1, 80% at 105 s−1, and 64% at 1000 s−1. In contrast, the electrochemical performance of the resulting electrodes differed only slightly, with discharge capacity varying by approximately 12.8% at 1.0 C (Δcapacity = 10.7 mAh g−1). This research highlights the importance of optimizing not only material selection but also processing techniques to advance safer and more sustainable energy storage solutions.

5 November 2025

(a) Semi-automatic two-roll laboratory calender; (b) Electrode thickness measurement setup using a dial indicator; (c) Schematic of calendering procedure at predefined positions.

Application of Activated Carbon/Alginate Composite Beads for the Removal of 2-Methylisoborneol from Aqueous Solution

  • Iresha Lakmali Balasooriya,
  • Mudalige Don Hiranya Jayasanka Senavirathna and
  • Weiqian Wang

The presence of 2-methylisoborneol (2-MIB) in water is a critical global concern due to its low threshold and resistance to conventional processes. In the present study, activated carbon/alginate (AC/alginate) composite beads were synthesized via ionic gelation method for the removal of 2-MIB from aqueous solution. The physicochemical characteristics of the adsorbent were determined using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effects of contact time, solution pH, initial 2-MIB concentration and adsorbent dose on adsorption were examined. Over 95% of 2-MIB removal was obtained under optimum conditions within 360 min. The adsorption equilibrium was well described by Langmuir (R2 = 0.97) and Freundlich (R2 = 0.96) models suggesting that 2-MIB adsorption involves both monolayer and multilayer adsorption. Kinetic modeling revealed that the pseudo-first order model showed strong fits to the experimental data, indicating the role of surface adsorption in controlling the rate of adsorption. The adsorbent demonstrated reasonable stability, retaining 59% removal efficiency after four adsorption–desorption cycles, highlighting its potential for repeated application in water treatment. Overall, the AC/alginate composite beads were found to be promising for the effective elimination of 2-MIB from water.

3 November 2025

SEM images of AC/alginate composite beads (dry) under different magnification, scale bar = 500 µm (a) scale bar = 100 µm (b) scale bar = 5 µm (c) scale bar = 10 µm (d).

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
AppliedChem - ISSN 2673-9623