Due to scheduled maintenance work on our database systems, there may be short service disruptions on this website between 10:00 and 11:00 CEST on June 14th.

Antioxidant Delivery Strategies for Prevention and Treatment of Skin Pathologies

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 3024

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
Interests: nanotechnology; lipid-based drug delivery systems; natural antioxidants; transdermal delivery systems; semisolid formulations
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The skin is the most external organ of the human body, representing a barrier, which protects the body from external effectors and toxicant agents. Furthermore, the skin is exposed to many drawbacks and risks, deriving, for instance, from exogenous and endogenous agents that can lead to oxidative stress and inflammatory diseases. The disorders and pathologies affecting the skin span from chronic, inflammatory skin diseases, such as atopic dermatitis and psoriasis, to cancers, such as melanoma. Research efforts are devoted to finding efficacious prevention strategies and therapies for skin diseases, such as evaluating plant-derived antioxidant agents, as well as novel drug delivery systems which are suitable for topical administration. Several approaches based on conventional or more specialized pharmaceutical formulations are under investigation, such as nanoplatforms aimed at promoting transdermal antioxidant delivery via the stratum corneum barrier.

This Special Issue welcomes the most recent innovations, as well updates regarding the potential of antioxidant delivery systems for dermatological applications.

Dr. Elisabetta Esposito
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery systems
  • skin delivery
  • antioxidant actives
  • skin pathologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 8995 KiB  
Article
Evaluation of Antioxidant and Anti-Inflammatory Effects of a Nanoformulation Derived from Annurca Apple Callus Extract in an In Vitro Model of Iron Overload-Induced Inflammation
by Federica Gubitosa, Laura Taramova, Stefanie Ho Yi Chan, Joan Liu, Daniele Fraternale, Vinood B. Patel, Satyanarayana Somavarapu, Lucia Potenza and Mohammed Gulrez Zariwala
Antioxidants 2025, 14(6), 631; https://doi.org/10.3390/antiox14060631 - 24 May 2025
Viewed by 450
Abstract
Ferroptosis, a regulated form of cell death driven by iron accumulation and lipid peroxidation, contributes to oxidative stress-related skin damage. This study evaluates the antioxidant and anti-inflammatory effects of a nanoformulation derived from an Annurca apple callus extract in an in vitro model [...] Read more.
Ferroptosis, a regulated form of cell death driven by iron accumulation and lipid peroxidation, contributes to oxidative stress-related skin damage. This study evaluates the antioxidant and anti-inflammatory effects of a nanoformulation derived from an Annurca apple callus extract in an in vitro model of ferroptosis using human keratinocytes (HaCaT cells). A hydroalcoholic extract from light Annurca apple callus (LCE) was nanoformulated with Pluronic® F127 and Soluplus® to enhance stability and bioavailability. The resulting nanoformulation (NF-LCE) exhibited optimal particle size (103.17 ± 0.87 nm), polydispersity index (0.21 ± 0.00), and zeta potential (−1.88 ± 0.64 mV). Iron overload (100 µM) was employed to induce oxidative stress and inflammation in HaCaT cells, resulting in elevated levels of inflammatory markers (COX2, IL-6, TNF-α) and a diminished antioxidant response, as indicated by decreased expression of GPX4 and Nrf2. NF-LCE treatment restored GPX4 and Nrf2 levels (~0.8-fold increase, p < 0.05) while significantly reducing COX2 (36.6%, p < 0.01), IL-6 (79.6%, p < 0.0001), and TNF-α (30.9%, p < 0.1). These results suggest NF-LCE as a promising therapeutic strategy for mitigating ferroptosis-induced skin damage, warranting further investigation in advanced skin models and clinical applications. Full article
Show Figures

Graphical abstract

17 pages, 2404 KiB  
Article
Anti-Inflammasome Effect of Impressic Acid on Diesel Exhaust Particulate Matter-Induced NLRP1 Inflammasome via the Keap1/p62/Nrf2-Signaling Pathway in Keratinocytes
by Seung Yeon Lee, Gi Ho Lee, Jeonghwan Maeng, Su Yeon Kim, Hwi-Yeol Yun, Gil-Saeng Jeong and Hye Gwang Jeong
Antioxidants 2025, 14(5), 610; https://doi.org/10.3390/antiox14050610 - 19 May 2025
Viewed by 453
Abstract
Diesel exhaust particulate (DEP) is widely recognized to weaken lung function and skin diseases. When the skin, which defends against external factors, is exposed to PM2.5, various chronic inflammatory diseases occur. When keratinocytes recognize harmful signals, they synthesize the NOD-like receptor protein 1 [...] Read more.
Diesel exhaust particulate (DEP) is widely recognized to weaken lung function and skin diseases. When the skin, which defends against external factors, is exposed to PM2.5, various chronic inflammatory diseases occur. When keratinocytes recognize harmful signals, they synthesize the NOD-like receptor protein 1 (NLRP1) inflammasome. DEP enhances NF-κB signaling and NLRP1 inflammasome expression through the interaction of TXNIP with NLRP1 in keratinocytes. Although many studies have reported the anti-inflammatory and antioxidant characteristics of Impressic acid (IPA), the umbrella consequences of IPA for PM2.5-influenced inflammasomes and the associated mechanisms remain unknown. Therefore, this study aimed to examine the protective function of IPA against inflammation in human keratinocytes. IPA attenuated the NLRP1 expression, caspase-1, IL-1β actuation, and NF-κB and IκB phosphorylation induction by DEP. IPA upregulated the Nrf2, HO-1, and NQO1 expression through CaMKKβ, AMPK, and GSK3β phosphorylation. Also, IPA led to the elevation of p62 and the degradation of the Keap1 protein. ML385 reversed the suppressive effect of IPA on the NLRP1 inflammasome, which was enhanced by DEP, and NAC counteracted the effect of ML385. These findings indicate that IPA can suppress inflammation induced by PM2.5 by expressing antioxidant enzymes through the Keap1/p62/Nrf2-signaling pathway in human keratinocytes. Full article
Show Figures

Figure 1

21 pages, 5604 KiB  
Article
Gossypin-Loaded Ethosome Gel for Cutaneous Administration: A Preliminary Study on Melanoma Cells
by Agnese Bondi, Walter Pula, Mascia Benedusi, Giulia Trinchera, Anna Baldisserotto, Stefano Manfredini, Maria Grazia Ortore, Alessia Pepe, Paolo Mariani, Marc C. A. Stuart, Giuseppe Valacchi and Elisabetta Esposito
Antioxidants 2025, 14(2), 186; https://doi.org/10.3390/antiox14020186 - 5 Feb 2025
Viewed by 1113
Abstract
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation [...] Read more.
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation of vesicle size distribution by photon correlation spectroscopy, morphology by cryogenic transmission electron microscopy, and gossypin entrapment capacity, as well as in vitro release and permeation by vertical diffusion cells, enabled us to select a production strategy based on the injection of a phosphatidylcholine ethanolic solution in water. Indeed, vesicles prepared by this method were almost unilamellar and measured roughly 150 nm mean diameter while displaying an entrapment capacity higher than 94%. Moreover, vesicles prepared by the ethanol injection method enabled us to control gossypin release and to improve its permeation with respect to the solution of the drug. To obtain semi-solid forms suitable for cutaneous gossypin administration, ethosome dispersions were thickened with 0.5% w/w xanthan gum, selected by a spreadability test. These ethosome gels were then further characterized by small- and wide-angle X-ray scattering, while their antioxidant activity was demonstrated in vitro by a radical scavenging assay. Finally, in vitro biological studies were conducted on A375 melanoma cell lines. Namely, wound healing and cell migration assays confirmed the potential antitumoral effect of gossypin, especially when loaded in the selected ethosomal gel. The promising results suggest further investigation of the potential of gossypin-loaded ethosomal gel in the treatment of melanoma. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

15 pages, 996 KiB  
Review
The Impact of the Skin Microbiome and Oxidative Stress on the Initiation and Development of Cutaneous Chronic Wounds
by Manuela Martins-Green, Jane Kim and Klara Aziz
Antioxidants 2025, 14(6), 682; https://doi.org/10.3390/antiox14060682 - 4 Jun 2025
Viewed by 288
Abstract
Wound healing is a very complex process composed of several phases in which precise events occur, both temporally and specially. However, when these processes go awry, biofilm-forming bacteria become installed in the healing tissue, and the patient has comorbidities, so the wounds do [...] Read more.
Wound healing is a very complex process composed of several phases in which precise events occur, both temporally and specially. However, when these processes go awry, biofilm-forming bacteria become installed in the healing tissue, and the patient has comorbidities, so the wounds do not heal and become chronic. In this review, we describe the importance of high levels of oxidative stress (OS) and bacteria from the skin microbiome in the initiation and development of chronic wounds. The skin microbiome is diverse in humans, and its composition is dependent on the environment in the specific areas of the body. OS is critical for wound healing as it stimulates the immune system to destroy pathogens and secrete cytokines and growth factors that stimulate healing. When OS levels become high in the wound and the bacteria of the skin install themselves in the wound, chronicity ensues. However, neither OS nor the bacteria of the skin alone can initiate chronicity. However, when present together, chronic wounds develop. Given the complexity of chronic wound initiation, developing treatment for these wounds has been difficult. Here, we also discuss the challenges of treating chronic wounds and offer a potential sequence of approaches to treating these wounds after debridement. Full article
Show Figures

Figure 1

Back to TopTop