You are currently viewing a new version of our website. To view the old version click .

Antibodies

Antibodies is an international, peer-reviewed, open access journal on immunoglobulins, published bimonthly online by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q3 (Immunology)

All Articles (737)

Antibodies Against SARS-CoV-2 Nucleocapsid Protein Possess Autoimmune Properties

  • Alexandra Rak,
  • Yana Zabrodskaya and
  • Pei-Fong Wong
  • + 1 author

Background/Objectives: Notwithstanding the declaration by the World Health Organization in May 2023 regarding the conclusion of the COVID-19 pandemic, new cases of this potentially lethal infection continue to be documented globally, exerting a sustained influence on the worldwide economy and social structures. Contemporary SARS-CoV-2 variants, while associated with a reduced propensity for severe acute pathology, retain the capacity to induce long-term post-COVID syndrome, including in ambulatory patient populations. This clinical phenomenon may be attributable to potential autoimmune reactions hypothetically triggered by antiviral antibodies, thereby underscoring the need for developing novel, universal vaccines against COVID-19. The nucleocapsid protein (N), being one of its most conserved and highly immunogenic components of SARS-CoV-2, presents a promising target for such investigative efforts. However, the protective role of anti-N antibodies, generated during natural infection or through immunization with N-based vaccines, alongside the potential adverse effects associated with their production, remains to be fully elucidated. In the present study, we aim to identify potential sites of homology in structures or sequences between the SARS-CoV-2 N protein and human antigens detected using hyperimmune sera against N protein obtained from mice, rabbits, and hamsters. Methods: We employed Western blot analysis of lysates from human cell lines (MCF7, HEK293T, THP-1, CaCo2, Hep2, T98G, A549) coupled with mass spectrometric identification to assess the cross-reactivity of polyclonal and monoclonal antibodies generated against recombinant SARS-CoV-2 N protein with human self-antigens. Results: We showed that anti-N antibodies developed in mice and rabbits exhibit pronounced immunoreactivity towards specific components of the human proteome. In contrast, anti-N immunoglobulins from hamsters showed no non-specific cross-reactivity with either hamster or human proteomic extracts because of the lack of autoreactivity or immunogenicity differences. Subsequent mass spectrometric analysis of the immunoreactive bands identified principal autoantigenic targets, which were predominantly heat shock proteins (including HSP90-beta, HSP70, mitochondrial HSP60, and HSPA8), histones (H2B, H3.1–3), and key metabolic enzymes (G6PD, GP3, PKM, members of the 1st family of aldo-keto reductases). Conclusions: The results obtained herein highlight the differences in the development of anti-N humoral responses in humans and in the Syrian hamster model. These data provide a foundational basis for formulating clinical recommendations to predict possible autoimmune consequences in COVID-19 convalescents and are of critical importance for the rational design of future N protein-based, cross-protective vaccine candidates against novel coronavirus infections.

22 December 2025

SDS-PAGE demonstrating autoreactivity zones (A) and Western blot analysis of cell lyzates developed with different antibodies: anti-IFNα mAbs (B), anti-N mouse sera (C), naïve mouse sera (D), NCL2 mAbs (E), anti-N rabbit sera (F), naïve rabbit sera (G), NCL10 mAbs (H), anti-N hamster sera (I), naïve hamster sera (J). The revealed bands are framed in red, and the red numbers indicate the mass spectrometry identification zones. The following cell lines are designated by the numbers: 1—MCF7; 2—HEK293; 3—THP1; 4—CaCo-2; 5—Hep2; 6—T98G; 7—A549; 8—CHO.

Breast cancer remains the most common malignancy and one of the leading causes of cancer-related death among women worldwide. Advances in antibody-based therapies have improved outcomes across all biological subtypes: HER2-positive, triple-negative, and luminal breast cancer. Monoclonal antibodies such as trastuzumab and pertuzumab have established HER2-targeted therapy as a standard of care, while immune checkpoint inhibitors have introduced immunotherapy into the treatment of triple-negative breast cancer. The emergence of antibody–drug conjugates (ADCs), including trastuzumab deruxtecan, sacituzumab govitecan, and datopotamab deruxtecan, has further expanded the available therapeutic options. Bispecific antibodies represent a new generation of agents with the potential to overcome resistance and enhance immune activation. Despite impressive progress, important challenges remain, including resistance mechanisms and the management of treatment-related toxicities. This review summarizes the biological rationale, clinical evidence, resistance mechanisms, and safety profiles of therapies based on monoclonal antibodies, bispecific antibodies, and antibody–drug conjugates in breast cancer. The development of these treatment modalities fosters the implementation of personalized, immunologically informed treatment strategies that are redefining precision oncology in breast cancer.

25 December 2025

Nanobodies (single-domain antibodies, VHHs) have emerged as versatile tools for evaluating and treating Alzheimer’s disease (AD). They offer distinct engineering benefits compared with traditional antibodies and small molecules, including small size, stability, and specificity. In AD, nanobodies have been shown in preclinical models to neutralize toxic amyloid-β oligomers, inhibit tau generation and aggregation, and modulate neuroinflammation, thereby demonstrating significant therapeutic potential. However, all nanobody applications in AD are discussed strictly as preclinical therapeutic potential rather than established clinical therapies, and direct clinical evidence in patients with AD is still lacking. Advanced engineering strategies, including intranasal and intrathecal routes, receptor-mediated transport, plasma protein binding with albumin, and focused ultrasound to facilitate brain penetration. Additionally, to improve nanobody delivery precision, half-life, and efficacy, strategies such as integrating nanobodies with nanoparticles, dendrimers, liposomes, and viral vectors are being employed. In fact, nanobodies are applied beyond monotherapy across multiple technological platforms to optimize brain delivery and target multiple targets. Nanobodies have been used on bispecific and trispecific antibody platforms, as well as in CRISPR/Cas9 editing and AI-driven technologies, to expand their applications. Recently, preclinical evidence has been mounting on the efficacy of nanobodies in clearing Aβ and tau, preserving synapses, and normalizing biomarkers. Comparison with FDA-approved anti-Aβ monoclonal antibodies (aducanumab, lecanemab, and donanemab) highlights opportunities and current translational gaps, including safety testing, half-life extension, and delivery optimization. This review critically delineates the current molecular mechanisms, emerging strategies, and delivery platforms, and emphasizes the potential of nanobodies as promising therapeutic and diagnostic molecules in AD therapeutics.

19 December 2025

Background: The Fc region of immunoglobulin G (IgG) is a key target in therapeutic and analytical applications, such as antibody purification and site-specific bioconjugation. Although Protein A exhibits strong Fc-binding affinity, its large molecular weight and limited chemical flexibility pose challenges for use in compact or chemically defined systems. To address these limitations, we designed two α-helical peptides, SpA h1 and SpA h2, based on the Fc-binding helices of the Z34C domain from Staphylococcus aureus Protein A. Method: To enhance the structural stability and Fc-binding capability of these peptides, a lactam-based stapling strategy was employed by introducing lysine and glutamic acid residues at positions i and i + 4. Result: The resulting stapled peptides, (s)SpA h1 and (s)SpA h2, exhibited significantly improved α-helical content and IgG-binding performance, as demonstrated by circular dichroism (CD) spectroscopy and fluorescence-based IgG capture assays. Surface plasmon resonance (SPR) analysis confirmed specific, concentration-dependent interactions with the Fc region of human IgG, with (s)SpA h1 consistently showing the binding affinity and stability. Proteolytic resistance assays using α-chymotrypsin revealed that (s)SpA h1 maintained its structural integrity over time, exhibiting markedly enhanced resistance to enzymatic degradation compared to its linear counterpart. Furthermore, (s)SpA h1 exhibited strong Fc selectivity with minimal Fab affinity, confirming its suitability as a compact and Fc-specific binding ligand. Conclusions: These results confirm the successful design and development of structurally reinforced Fc-binding peptides that overcome the inherent limitations of short linear sequences through both high-affinity sequence optimization and lactam-based stapling. Among them, (s)SpA h1 demonstrates the most promising characteristics as a compact yet stable Fc-binding ligand, suitable for applications such as antibody purification and site-specific bioconjugation.

16 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Antibodies - ISSN 2073-4468