Antibody-Based Therapeutics in Breast Cancer: Clinical and Translational Perspectives
Abstract
1. Introduction
2. Biological Basis of Antibody Therapy in Breast Cancer
2.1. Mechanisms of Action of Monoclonal Antibodies
2.2. Antibody–Drug Conjugates
2.3. Bispecific Antibodies
2.4. Biomarker-Based Patient Selection
3. HER2-Positive and HER2-Low Breast Cancer
3.1. Monoclonal Antibodies
3.2. Antibody–Drug Conjugates
3.3. Bispecific Antibodies
3.4. Mechanisms of Resistance and Therapeutic Strategies
3.5. Toxicities and Clinical Management
3.6. Future Perspectives
4. Triple-Negative Breast Cancer
4.1. Monoclonal Antibodies
4.2. Antibody–Drug Conjugates
4.3. Bispecific Antibodies
4.4. Mechanisms of Resistance and Strategies
4.5. Toxicities and Clinical Management
4.6. Future Perspectives
5. Hormone Receptor–Positive/HER2-Negative Breast Cancer
5.1. Monoclonal Antibodies
5.2. Antibody–Drug Conjugates
5.3. Bispecific Antibodies
5.4. Mechanisms of Resistance
5.5. Toxicities and Clinical Management
5.6. Future Perspectives
6. Optimizing the Therapeutic Use and Sequencing of Antibodies and Antibody–Drug Conjugates in Breast Cancer
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADCC | Antibody-Dependent Cellular Cytotoxicity |
| ADCP | Antibody-Dependent Cellular Phagocytosis |
| ADC | Antibody–Drug Conjugate |
| AKT | Protein Kinase B |
| BsAb | Bispecific Antibody |
| CDK4/6 | Cyclin-Dependent Kinase 4 and 6 |
| CPS | Combined Positive Score |
| CRS | Cytokine Release Syndrome |
| ctDNA | Circulating Tumor DNA |
| DFS | Disease-Free Survival |
| DoR | Duration of Response |
| Dato-DXd | Datopotamab Deruxtecan |
| EFS | Event-Free Survival |
| ER | Estrogen Receptor |
| FcγR | Fc Gamma Receptor |
| G-CSF | Granulocyte Colony-Stimulating Factor |
| HER2 | Human Epidermal Growth Factor Receptor 2 |
| HER3 | Human Epidermal Growth Factor Receptor 3 |
| HR | Hazard Ratio/Hormone Receptor—depending on context |
| HR+/HR− | Hormone Receptor Positive/Negative |
| IHC | Immunohistochemistry |
| ILD | Interstitial Lung Disease |
| ISH | In Situ Hybridization |
| iDFS | Invasive Disease-Free Survival |
| LVEF | Left Ventricular Ejection Fraction |
| mAb | Monoclonal Antibody |
| mOS | Median Overall Survival |
| mPFS | Median Progression-Free Survival |
| ORR | Objective Response Rate |
| OS | Overall Survival |
| pCR | Pathological Complete Response |
| PD-1 | Programmed Cell Death Protein 1 |
| PD-L1 | Programmed Death-Ligand 1 |
| PFS | Progression-Free Survival |
| PI3K | Phosphatidylinositol 3-Kinase |
| sac-TMT | Sacituzumab Tirumotecan |
| T-DM1 | Trastuzumab Emtansine |
| T-DXd | Trastuzumab Deruxtecan |
| THP | Trastuzumab + Pertuzumab + Docetaxel |
| TIL | Tumor-Infiltrating Lymphocyte |
| TNBC | Triple-Negative Breast Cancer |
| TROP-2 | Trophoblast Cell-Surface Antigen 2 |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van de Rijn, M.J.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef]
- ESMO Guidelines Committee. ESMO Clinical Practice Guidelines: Breast Cancer. Ann. Oncol. 2023, 34, ii1–ii26. [Google Scholar]
- Corti, C.; Batra-Sharma, H.; Kelsten, M.; Shatsky, R.A.; Garrido-Castro, A.C.; Gradishar, W.J. Systemic Therapy in Breast Cancer. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e432442. [Google Scholar] [CrossRef]
- Baah, S.; Laws, M.; Rahman, K.M. Antibody–Drug Conjugates—A Tutorial Review. Molecules 2021, 26, 2943. [Google Scholar] [CrossRef]
- Lan, Y.; Li, Y.; Chen, Z.; Qin, T.; Jin, K. Bispecific antibodies revolutionizing breast cancer treatment. Front. Immunol. 2023, 14, 1266450. [Google Scholar] [CrossRef]
- Hudis, C.A. Trastuzumab—Mechanism of Action and Use in Clinical Practice. N. Engl. J. Med. 2007, 357, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abranson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. NCCN guidelines, Breast Cancer, Version 5. J. Natl. Compr. Cancer Netw. 2025, 23, 426–436. [Google Scholar] [CrossRef]
- Cortes, J.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 387, 9–420. [Google Scholar] [CrossRef]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific Antibodies: A Mechanistic Review of the Pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Cameron, D.; Piccart-Gebhart, M.J.; Gelber, R.D.; Procter, M.; Goldhirsch, A.; Castro, G.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 2017, 389, 1195–1205. [Google Scholar] [CrossRef]
- Gianni, L.; Pienkowski, T.; Im, Y.H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Piccart, M.; Clark, E.; Viale, G.; Caballero, C.; Henry, C.; Tomasello, G.; Fein, L.E.; Gnant, M.I.; Kuemmel, S.; et al. LBA1 Adjuvant pertuzumab or placebo + trastuzumab + chemotherapy (P or Pla + T + CT) in patients (pts) with early HER2-positive operable breast cancer in APHINITY: Final analysis at 11.3 years’ median follow-up. ESMO Open 2025, 10, 105112. [Google Scholar] [CrossRef]
- Swain, S.M.; Miles, D.; Kim, S.-B.; Im, Y.-H.; Im, S.-A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturu, E.; et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): End-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 519–530. [Google Scholar] [CrossRef]
- Diéras, V.; Miles, D.; Verma, S.; Pegram, M.; Welslau, M.; Baselga, J.; Krop, I.E.; Blackwell, K.; Hoersch, S.; Xu, J.; et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): A descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 732–742. [Google Scholar] [CrossRef]
- Geyer, C.E., Jr.; Untch, M.; Huang, C.S.; Mano, M.S.; Mamounas, E.P.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; Fischer, H.H.; et al. KATHERINE Study Group. Survival with Trastuzumab Emtansine in Residual HER2-Positive Breast Cancer. N. Engl. J. Med. 2025, 392, 249–257. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Hegg, R.; Chung, W.P.; Im, S.A.; Jacot, W.; Ganju, V.; Chiu, J.W.Y.; Xu, B.; Hamilton, E.; Madhusudan, S.; et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet 2023, 401, 105–117. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Jiang, Z.; Zhang, Q.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; Kemal, Y.; et al. Trastuzumab deruxtecan (T-DXd) + pertuzumab (P) vs taxane + trastuzumab + pertuzumab (THP) for first-line (1L) treatment of patients (pts) with human epidermal growth factor receptor 2–positive (HER2+) advanced/metastatic breast cancer (a/mBC): Interim results from DESTINY-Breast09. J. Clin. Oncol. 2025, 43, Abstract LBA1008. [Google Scholar]
- Meric-Bernstam, F.; Beeram, M.; Hamilton, E.; Oh, D.Y.; Hanna, D.L.; Kang, Y.K.; Elimova, E.; Chaves, J.; Goodwin, R.; Lee, J.; et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: A phase 1, dose-escalation and expansion study. Lancet Oncol. 2022, 23, 1558–1570. [Google Scholar] [CrossRef] [PubMed]
- Rexer, B.N.; Arteaga, C.L. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: Mechanisms and clinical implications. Crit. Rev. Oncog. 2012, 17, 1–16. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef]
- Lee-Hoeflich, S.T.; Crocker, L.; Yao, E.; Pham, T.; Munroe, X.; Hoeflich, K.P.; Sliwkowski, M.X.; Stern, H.M. A central role for HER3 in HER2-amplified breast cancer: Implications for targeted therapy. Cancer Res. 2008, 68, 5878–5887. [Google Scholar] [CrossRef]
- Shanu, M.; William, J.; Toshinari, Y.; Joohyuk, S.; Maria, V.; Eriko, T.; Junji, T.; Naoto, T.U.; Aleix, P.; Yee, S.C.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer (IMpassion130). N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. Lancet 2020, 396, 1817. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer (KEYNOTE-522). N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.; Punie, K.; Barrios, C.; Hurvitz, S.A.; Schneeweiss, A.; Sohn, J.; Tokunaga, E.; Brufsky, A.; Park, Y.H.; Xu, B.; et al. Sacituzumab Govitecan in Untreated, Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2025, 393, 1912–1925. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Azambuja, E.; Kalinsky, K.; Loi, S.; Kim, S.-B.; Yam, C.; Rapoport, B.L.; Im, S.-A.; Pistilli, B.; McHayleh, W.; et al. Sacituzumab govitecan + pembrolizumab vs chemotherapy + pembrolizumab in previously untreated PD-L1–positive advanced triple-negative breast cancer: Primary results of the phase III ASCENT-04/KEYNOTE-D19 study. J. Clin. Oncol. 2025, 43, LBA109. [Google Scholar] [CrossRef]
- Bardia, A.; Krop, I.E.; Kogawa, T.; Juric, D.; Tolcher, A.W.; Hamilton, E.P.; Mukohara, T.; Lisberg, A.; Shimizu, T.; Spira, A.I.; et al. Datopotamab Deruxtecan in Hormone Receptor–Positive, HER2-Negative or Triple-Negative Breast Cancer: Results from the Phase I TROPION-PanTumor01 Study. J. Clin. Oncol. 2022, 42, 2281–2294. [Google Scholar] [CrossRef]
- Dent, R.; Shao, Z.; Schmid, P.; Cortés, J.; Cescon, D.; Saji, S.; Jung, K.; Bachelot, T.; Wang, S.; Basaran, G.; et al. First-Line Datopotamab Deruxtecan (Dato-DXd) vs Chemotherapy in Patients with Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (TNBC) for Whom Immunotherapy was Not an Option: Primary Results from the Randomised, Phase 3 TROPION-Breast02 Trial. In Proceedings of the 2025 ESMO Congress, Berlin, Germany, 17–21 October 2025. Abstract LBA21. [Google Scholar]
- Schmid, P.; Im, S.; Armstrong, A.; Park, Y.; Chung, W.-P.; Nowecki, Z.; Lord, S.; Wysocki, P.J.; Lu, Y.-S.; Dry, H.; et al. BEGONIA: Phase 1b/2 study of durvalumab (D) combinations in locally advanced/metastatic triple-negative breast cancer (TNBC)—Initial results from arm 1, d+paclitaxel (P), and arm 6, d+trastuzumab deruxtecan (T-DXd). J. Clin. Oncol. 2021, 39, 1023. [Google Scholar] [CrossRef]
- Xu, B.; Yin, Y.; Fan, Y.; Ouyang, Q.; Song, L.; Wang, X.; Li, W.; Li, M.; Yan, X.; Wang, S.; et al. Sacituzumab tirumotecan (SKB264/MK-2870) in patients (pts) with previously treated locally recurrent or metastatic triple-negative breast cancer (TNBC): Results from the phase III OptiTROP-Breast01 study. J. Clin. Oncol. 2024, 42, 104. [Google Scholar] [CrossRef]
- Yin, Y.; Ouyang, Q.; Yan, M.; Zhang, J.; Song, L.; Li, W.; Gu, Y.; Liu, X.; Wang, J.; Wang, X.; et al. Sacituzumab tirumotecan (sac-TMT) as first-line treatment for unresectable locally advanced/metastatic triple-negative breast cancer (a/mTNBC): Initial results from the phase II OptiTROP-Breast05 study. J. Clin. Oncol. 2025, 43, 1019–1019. [Google Scholar] [CrossRef]
- Krop, I.E.; Masuda, N.; Mukohara, T.; Takahashi, S.; Nakayama, T.; Inoue, K.; Iwata, H.; Yamamoto, Y.; Alvarez, R.; Toyama, T.; et al. Patritumab Deruxtecan (HER3-DXd), a Human Epidermal Growth Factor Receptor 3-Directed Antibody-Drug Conjugate, in Patients with Previously Treated Human Epidermal Growth Factor Receptor 3-Expressing Metastatic Breast Cancer: A Multicenter, Phase I/II Trial. J. Clin. Oncol. 2023, 41, 5550–5560. [Google Scholar] [CrossRef] [PubMed]
- Beckwith, H.C.; Medgyesy, D.C.; Abraham, J.; Nanda, R.; Tkaczuk, K.H.R.; Krop, I.E.; Pusztai, L.; Modi, S.; Mita, M.M.; Specht, J.M.; et al. SGNLVA-001: A phase I open-label dose escalation and expansion study of SGN-LIV1A administered weekly in breast cancer. J. Clin. Oncol. 2020, 38, TPS1104–TPS1104. [Google Scholar] [CrossRef]
- Choi, B.D.; Maus, M.V.; June, C.H.; Sampson, J.H. Immunotherapy for Glioblastoma: Adoptive T-Cell Strategies and Bispecific T-Cell Engagers. Nat. Rev. Clin. Oncol. 2019, 16, 475–487. [Google Scholar] [CrossRef]
- Garrido, F.; Aptsiauri, N.; Doorduijn, E.M.; Garcia Lora, A.M.; van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016, 16, 767–775. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Xue, J.; Li, J.; Yi, J.; Bu, J.; Zhang, Z.; Qiu, P.; Gu, X. Advances in immunotherapy for triple-negative breast cancer. Mol. Cancer 2023, 22, 145. [Google Scholar] [CrossRef]
- Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef]
- Miller, K.D.; Chap, L.I.; Holmes, F.A.; Cobleigh, M.A.; Marcom, P.K.; Fehrenbacher, L.; Dickler, M.; Overmoyer, B.A.; Reimann, J.D.; Sing, A.P.; et al. Randomized Phase III Trial of Capecitabine Compared with Bevacizumab plus Capecitabine in Patients with Previously Treated Metastatic Breast Cancer. J. Clin. Oncol. 2005, 23, 792–799. [Google Scholar] [CrossRef]
- Rugo, H.S.; Delord, J.P.; Im, S.A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.M.J.; Varga, A.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor–Positive/HER2-Negative Advanced Breast Cancer: Results from the Phase Ib KEYNOTE-028 Study. Cancer Res. 2018, 78, 5054–5061. [Google Scholar]
- Cardoso, F.; O’Shaughnessy, J.; Liu, Z.; McArthur, H.; Schmid, P.; Cortes, J.; Harbeck, N.; Telli, M.L.; Cescon, D.W.; Fasching, P.A.; et al. Pembrolizumab and chemotherapy in high-risk, early-stage, ER+/HER2− breast cancer: A randomized phase 3 trial. Nat. Med. 2025, 31, 442–448. [Google Scholar] [CrossRef]
- Bardia, A.; Jhaveri, K.; Im, S.; Pernas, S.; De Laurentiis, M.; Wang, S.; Martínez Jañez, N.; Borges, G.; Cescon, D.W.; Hattori, M.; et al. Datopotamab Deruxtecan Versus Chemotherapy in Previously Treated Inoperable/Metastatic Hormone Receptor–Positive Human Epidermal Growth Factor Receptor 2–Negative Breast Cancer: Primary Results From TROPION-Breast01. J. Clin. Oncol. 2025, 43, 285–296. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Tolaney, S.M.; Cortes, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Sacituzumab Govitecan in Hormone Receptor–Positive/HER2-Negative Metastatic Breast Cancer. N. Engl. J. Med. 2022, 387, 552–563. [Google Scholar]
- Li, M.; Fan, Y.; Li, H.; Wang, H.; Wang, S.; Yu, H.; Tong, Z.; Sun, Z.; Shao, X.; Yin, Y.; et al. Sacituzumab tirumotecan versus physician’s choice chemotherapy in pretreated HR-positive/HER2-negative metastatic breast cancer: Results from the phase III OptiTROP-Breast02 study. Ann. Oncol. 2025, 36, LBA15. [Google Scholar]
- Shan, K.S.; Musleh Ud Din, S.; Dalal, S.; Gonzalez, T.; Dalal, M.; Ferraro, P.; Hussein, A.; Vulfovich, M. Bispecific Antibodies in Solid Tumors: Advances and Challenges. Int. J. Mol. Sci. 2025, 26, 5838. [Google Scholar] [CrossRef] [PubMed]
| ADC Conjugate | Molecular Target | Mechanism of Action | Dosage | Study Results | Registration |
|---|---|---|---|---|---|
| Sacituzumab Govitecan (SG) | TROP-2 | Anti-Trop2 antibody linked to SN-38 | 10 mg/kg i.v. days 1 and 8 of each 21day cycle | Ascent trial: mPFS 5.6 months vs 1.7; TROPIC02 trial: mPFS 5.5 months vs 4 | Approved in 2nd line for advanced TNBC and HR+/HER2− |
| Trastuzumab Deruxtecan (T-DXd) | HER2 | Trastuzumab linked to DXd | 5.4 mg/kg i.v. every 3 weeks | Destiny-Breast04: mPFS 10 months vs 5.4; Destiny-Breast03: mPFS 28.8 months vs 6.8 | Approved for advanced HER2 and HER2-low breast cancer |
| Trastuzumab Emtansine (T-DM1) | HER2 | Trastuzumab linked to emtanzine | 3.6 mg/kg i.v. every 3 weeks | EMILIA trial: mPFS 9.6 months vs 6.4 KATHERINE trial: iDFS 80.8% vs 67.1%, OS 89.1% vs 84.4% | Early Her2+; adjuvant for residual disease Metastatic HER2; 2nd and subsequant lines |
| Datopotomab Deruxtecan (Dato-DXd) | TROP-2 | Anti-Trop2 antibody linked to deruxtecan | 6 mg/kg i.v. every 3 weeks | Tropion-Breast02: mPFS 10.8 months vs 5.6 Tropion-Breast01: mPFS 6.9 months vs 4.9 | HR+/HER2− metastatic breast cancer after prior endocrine-base therapy and chemotherapy |
| Sacituzumab Tirumotecan (sac-TMT) | TROP-2 | Anti-Trop2 antibody linked to tirumotecan | 5 mg/kg i.v. every 2 weeks | OptiTROP-Breast 01: mPFS 6.7 months vs 2.5; mOS not reached vs 9.4 months; OptiTROP-Breast05: mPFS 13.4 months | HER2-negative, locally advanced or metastatic breast cancer after receiving prior therapies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Balata, A.; Pogoda, K. Antibody-Based Therapeutics in Breast Cancer: Clinical and Translational Perspectives. Antibodies 2026, 15, 3. https://doi.org/10.3390/antib15010003
Balata A, Pogoda K. Antibody-Based Therapeutics in Breast Cancer: Clinical and Translational Perspectives. Antibodies. 2026; 15(1):3. https://doi.org/10.3390/antib15010003
Chicago/Turabian StyleBalata, Anna, and Katarzyna Pogoda. 2026. "Antibody-Based Therapeutics in Breast Cancer: Clinical and Translational Perspectives" Antibodies 15, no. 1: 3. https://doi.org/10.3390/antib15010003
APA StyleBalata, A., & Pogoda, K. (2026). Antibody-Based Therapeutics in Breast Cancer: Clinical and Translational Perspectives. Antibodies, 15(1), 3. https://doi.org/10.3390/antib15010003

