Topical Collection "Poultry Nutrition and Metabolism"

A topical collection in Animals (ISSN 2076-2615). This collection belongs to the section "Poultry".

Editors

Prof. Dr. Vincenzo Tufarelli
E-Mail Website1 Website2
Guest Editor
Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, s.p. Casamassima Km 3, 70010 Valenzano, Bari, Italy
Interests: animal nutrition; poultry nutrition; feed science; feed technology
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Fulvia Bovera
E-Mail Website
Guest Editor
Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy
Interests: animal nutrition; rabbit; poultry; fish; edible insect; feed evaluation; feed formulation
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

The aim of this Topical Collection is to publish high-quality papers related to poultry nutrition and metabolism as well as the interrelations between nutrition, metabolism, microbiota, and poultry health. Thus, we invite you to submit your recent findings to this Topical Collection as original research or review articles on poultry nutrition and metabolism regarding, but not limited to: the effect of feeding on poultry meat end egg quality; nutrient requirements of poultry; the use of functional feed additives to improve gut health and immune status; microbiota; nutraceuticals; soybean meal replacers as alternative sources of protein for poultry; the environmental impacts of feeding poultry; the use of feed/food by-products in poultry diet; feed technology; and poultry organic productions.

Prof. Dr. Vincenzo Tufarelli
Prof. Dr. Fulvia Bovera
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • poultry nutrition
  • metabolism
  • microbiota
  • broiler
  • laying hen
  • quail
  • duck
  • turkey
  • game birds
  • feed additives
  • by-products
  • nutraceuticals
  • organic production

Published Papers (11 papers)

2021

Article
Dietary Fiber and Lysolecithin Supplementation in Growing Ducks: Effect on Performance, Immune Response, Intestinal Morphology and Lipid Metabolism-Regulating Genes
Animals 2021, 11(10), 2873; https://doi.org/10.3390/ani11102873 - 30 Sep 2021
Viewed by 392
Abstract
The impact of different dietary fiber (DF) levels (with or without lysolecithin supplementation) on growth performance, immune response, expression of some lipid regulating genes and intestinal morphology was assessed in 408 Pekin ducks for 2 months. Soybean hulls were added to the diet [...] Read more.
The impact of different dietary fiber (DF) levels (with or without lysolecithin supplementation) on growth performance, immune response, expression of some lipid regulating genes and intestinal morphology was assessed in 408 Pekin ducks for 2 months. Soybean hulls were added to the diet to provide four different levels of DF: 2.4 (control diet), 3.8, 5.3, and 6.7% for the first four groups, respectively, while groups 5 to 8 fed the same four levels of DF with lysolecithin addition. Increasing dietary DF non-significantly reduced (p > 0.05) the ducks’ body weight (BW). However, ducks fed on 3.8% DF showed higher BW and improved feed conversion ratio. Lysolecithin supplementation with different DF did not support growth performance. Increasing DF with or without lysolecithin had no effect on serum lipid profile (p > 0.05). However, serum high-density lipoproteins (HDL) concentration was significantly increased with increasing fiber level in diet (p ˂ 0.05). Increasing DF with or without lysolecithin addition increased serum antioxidant activities and improved the immune response in terms of phagocytic and lysozyme activities. The DF level reduced the duodenal villi length and mucosal layer thickness while increased the villi width (p ˂ 0.05). Lysolecithin supplementation to diets ameliorated adverse effects on intestinal morphology. Moreover, DF level in ducks’ diet with or without lysolecithin significantly upregulated the expression of fatty acid synthase and lipoprotein lipase (p ˂ 0.05). Thus, it could be concluded that ducks fed on soybean hulls containing a diet at the level of 4.5% and providing 3.8% fiber level with or without lysolecithin showed the best performance. Full article
Show Figures

Figure 1

Article
Enhancing Growth Performance, Organ Development, Meat Quality, and Bone Mineralisation of Broiler Chickens through Multi-Enzyme Super-Dosing in Reduced Energy Diets
Animals 2021, 11(10), 2791; https://doi.org/10.3390/ani11102791 - 24 Sep 2021
Viewed by 596
Abstract
This study identified the optimal multi-enzyme dose rate at three energy levels based on the production performance of broiler chickens. A 42-day grow out trial was conducted using 576 day-old mixed-sex ROSS308 broiler chickens in a 3 × 4 factorial arrangement in a [...] Read more.
This study identified the optimal multi-enzyme dose rate at three energy levels based on the production performance of broiler chickens. A 42-day grow out trial was conducted using 576 day-old mixed-sex ROSS308 broiler chickens in a 3 × 4 factorial arrangement in a completely randomized design. Diets consisting of three metabolizable energy (ME) levels: standard energy (STD), 150 kcal/kg energy reduction (STD-150), and 200 kcal/kg energy reduction (STD-200), were cross factored with four multi-enzyme inclusion levels (0, 350, 700, and 1000 g/ton). The average daily feed intake and feed conversion ratio increased linearly (p < 0.001) as the dietary ME was reduced, and the multi-enzyme addition improved the feed conversion ratio (p < 0.05) and mitigated the negative effect of the reduced energy diets (RED) on feed intake and feed conversion ratios. Carcass composition, organ weights, and meat quality were not affected by the experimental diets. The RED decreased abdominal fat weight (p < 0.05). Total ash, calcium, and phosphorous contents of the tibia bone were improved (p < 0.04) when the RED were supplemented with the multi-enzyme. Super-dosing multi-enzymes in RED mitigates the negative effect of ME reduction on growth performance while maintaining organ development and meat quality and improving bone mineral content. Full article
Article
The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin
Animals 2021, 11(6), 1535; https://doi.org/10.3390/ani11061535 - 25 May 2021
Cited by 1 | Viewed by 1863
Abstract
Biological activity of lavender essential oil is a property that can potentially find an application in poultry nutrition. Nowadays, the use of bioactive compounds is encouraged in many areas of industry and agriculture, since these substances have similar properties as withdrawn antibiotic growth [...] Read more.
Biological activity of lavender essential oil is a property that can potentially find an application in poultry nutrition. Nowadays, the use of bioactive compounds is encouraged in many areas of industry and agriculture, since these substances have similar properties as withdrawn antibiotic growth promoters. Additionally, antibiotic resistance bacteria are one of the most important current threats to animal health. The purpose of the study was to determine the influence of lavender essential oil on the production parameters and blood parameters in broiler chickens and to assess the lavender oil’s in vitro reaction in a combination with enrofloxacin towards Escherichia coli. One-day-old non-sexed chicks (Ross 308) were divided into three experimental groups, each consisting of 100 individuals (five replicate of 20 boiler chicken each). The chickens in the control group received drinking water with no addition of lavender essential oil. In the experimental groups, lavender oil was added to the drinking water at a concentration of 0.4 mL/L, in the LEO1–42 from 1 to 42 days of age and the LEO22–42 group from the 22 to 42 days of age. The chickens’ body weight, feed consumption, water consumption, deaths and elimination due to health reasons were determined in the experiment. On day 42 of the chickens’ lives, blood samples were collected based on which selected parameters were identified. An in vitro experiment of lavender oil in combination with enrofloxacin was investigated with a checkerboard method. The results of the experiment showed the antimicrobial and antioxidant activity of lavender essential oil and its positive effect on the production results of broiler chickens. The study results proved that the addition of lavender oil positively impacted the chickens’ final body weight and feed conversion ratio (p < 0.01). No differences were observed between the groups for water consumption, death rate and the examined biochemical and immunological blood serum indices. Lavender essential oil was demonstrated to increase the blood serum’s total antioxidant status. A synergistic reaction in vitro was observed for lavender oil combined with enrofloxacin against resistant strains of Escherichia coli. Based on our study, a health-promoting effect of adding LEO to water for broiler chickens was found. Moreover, in vitro studies indicate a significant effect of lavender essential oil on the inhibition of the resistant strains of Escherichia coli growth and synergistic reaction with enrofloxacin. Full article
Show Figures

Figure 1

Article
Effect of the Pellet and Mash Feed Forms on the Productive Performance, Egg Quality, Nutrient Metabolism, and Intestinal Morphology of Two Laying Hen Breeds
Animals 2021, 11(3), 701; https://doi.org/10.3390/ani11030701 - 05 Mar 2021
Cited by 3 | Viewed by 668
Abstract
One of the most important factors that determine feed utilization by chickens is the feed form. Although it is generally believed that pellet diets have a positive effect on chicken growth, there are some studies that have indicated no difference between pellet and [...] Read more.
One of the most important factors that determine feed utilization by chickens is the feed form. Although it is generally believed that pellet diets have a positive effect on chicken growth, there are some studies that have indicated no difference between pellet and mash on chickens performance. This study was conducted to assess the effects of feed form on production performance, egg quality, nutrient metabolism and intestinal morphology in two breed laying hens. Two hundred and sixteen 25-week-old Hy-Line brown (n = 108) and Hy-Line grey (n = 108) hens were selected. Each breed was randomly allocated into two treatments with 6 replications (9 birds in each replication), which were fed mash and pellet diets, respectively. Production performances were recorded daily and egg quality traits were measured every two weeks. At 42 weeks of age, one bird per replication from each experimental group was selected for metabolism determination and intestine morphology observation. Compared with mash diets, pellet diets improved laying rate (p < 0.05), ADFI (average daily feed intake, p < 0.05), egg weight, shell strength, yolk proportion and Haugh unit (p < 0.05) in both breeds and reduced the FCR (feed conversion ratio, p < 0.05) in Hy-Line grey. The apparent digestibility of DM% (dry matter) and CP% (crude protein) were significantly higher (p < 0.05) in both breed laying hens fed pellet than those fed mash. The apparent digestibility of P% (phosphorus) and Ca% (calcium) was higher in Hy-Line grey fed pellet and was higher in Hy-Line brown fed mash. Compared to mash diets, pellet diets increased the VH (villus height), CD (crypt depth) and VCR (ratio of villus height to crypt depth) of the small intestine of Hy-Line grey, and increased the VH and CD of duodenum and ileum of Hy-Line brown. Overall, pellet diets improved production performance and nutrition metabolism through positive changes in the laying rate, feed intake, egg albumen quality and apparent digestibility of laying hens. The current findings provided support for the advantages of feeding pellets during the peak egg laying period for the two popular laying hen strains, Hy-Line brown and Hy-Line grey. Full article
Show Figures

Figure 1

Review
The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens
Animals 2021, 11(2), 399; https://doi.org/10.3390/ani11020399 - 04 Feb 2021
Cited by 3 | Viewed by 1363
Abstract
It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity [...] Read more.
It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity and growth performance without inducing metabolic disorders. The aim of the study was to establish the dosage and time of administration of such a phytobiotic that would have the most beneficial effect on the intestinal histology and microbiota, production results, and immune and metabolic status of broiler chickens. The experiment was carried out on 980 one-day-old male chickens until the age of 42 days. The chickens were assigned to seven experimental groups of 140 birds each (seven replications of 20 individuals each). The control group (G-C) did not receive the phytobiotic. Groups CT-0.05, CT-0.1, and CT-0.25 received the phytobiotic in their drinking water in the amount of 0.05, 0.1, and 0.2 mL/L, respectively, at days 1–42 of life (continuous application, CT). The birds in groups PT-0.05, PT-0.5, and PT-0.25 received the phytobiotic in the same amounts, but only at days 1–7, 15–21, and 29–35 of life (periodic application, PT). Selected antioxidant and biochemical parameters were determined in the blood of the chickens, as well as parameters of immune status and redox status. The morphology of the intestinal epithelium, composition of the microbiome, and production parameters of chickens receiving the phytobiotic in their drinking water were determined as well. The addition of a phytobiotic containing cinnamon oil and citric acid to the drinking water of broiler chickens at a suitable dosage and for a suitable time can beneficially modify the microbiome composition and morphometry of the small intestine (total number of fungi p < 0.001, total number of aerobic bacteria p < 0.001; and total number of coliform bacteria p < 0.001 was decreased) improving the immunity and growth performance of the chickens (there occurred a villi lengthening p = 0.002 and crypts deepening p = 0.003). Among the three tested dosages (0.05, 0.1, and 0.25 mL/L of water) of the preparation containing cinnamon oil, the dosage of 0.25 mL/L of water administered for 42 days proved to be most beneficial. Chickens receiving the phytobiotic in the amount of 0.25 mL/L had better growth performance, which was linked to the beneficial effect of the preparation on the microbiome of the small intestine, metabolism (the HDL level p = 0.017 was increased; and a decreased level of total cholesterol (TC) p = 0.018 and nonesterified fatty acids (NEFA) p = 0.007, LDL p = 0.041, as well as triacylglycerols (TAG) p = 0.014), and immune (the level of lysozyme p = 0.041 was increased, as well as the percentage of phagocytic cells p = 0.034, phagocytosis index p = 0.038, and Ig-A level p = 0.031) and antioxidant system (the level of LOOH p < 0.001, MDA p = 0.002, and the activity of Catalase (CAT) p < 0.001 were decreased, but the level of ferric reducing ability of plasma (FRAP) p = 0.029, glutathione p = 0.045 and vitamin C p = 0.021 were increased). Full article
Article
Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status
Animals 2021, 11(2), 335; https://doi.org/10.3390/ani11020335 - 28 Jan 2021
Cited by 6 | Viewed by 1299
Abstract
The purpose of this study was to examine the effect of dietary horsetail (Equisetum arvense) and spirulina (Spirulina platensis) supplementation on performance, egg quality, serum biochemical and antioxidant status of laying hens. A total of 648, 63-week-old Hy-Line W-36 [...] Read more.
The purpose of this study was to examine the effect of dietary horsetail (Equisetum arvense) and spirulina (Spirulina platensis) supplementation on performance, egg quality, serum biochemical and antioxidant status of laying hens. A total of 648, 63-week-old Hy-Line W-36 layers were divided into nine groups with eight replicates per group (nine birds per replicate). A feeding trial was conducted under completely randomized design with factorial arrangement 3 × 3 consisting of three different dietary levels of horsetail supplementations (0, 0.25, and 0.50%, respectively) in combination with three levels of spirulina (0, 1, and 2%, respectively). Results showed that feed intake, egg production, egg weight and mass, and feed conversion ratio were not significantly affected by the dietary treatments. Eggshell thickness, strength, and yolk color were significantly improved in diets supplemented with 0.5% horsetail and 2% spirulina and their interactions. Egg yolk cholesterol was not significantly different among groups; however, a significant reduction was found when fed 2% spirulina. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentration decreased by supplementing 2% spirulina in diet; also, spirulina increased total superoxide dismutase (TSOD) and total antioxidant capacity (TAC) in laying hens. Overall, the findings indicated that the combination of horsetail and spirulina could have potential for improving the egg’s physical parameters, whereas spirulina was more effective in improving blood traits and oxidative status. Full article
Article
Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens
Animals 2021, 11(1), 147; https://doi.org/10.3390/ani11010147 - 11 Jan 2021
Cited by 7 | Viewed by 814
Abstract
The current study was conducted to examine the effects of deoxynivalenol (DON) at different levels (5 and 15 mg/kg feed) on the metabolism, immune response and welfare parameters of male broiler chickens (Ross 308) at 42 days old. Forty-five 1 day-old broiler chickens [...] Read more.
The current study was conducted to examine the effects of deoxynivalenol (DON) at different levels (5 and 15 mg/kg feed) on the metabolism, immune response and welfare parameters of male broiler chickens (Ross 308) at 42 days old. Forty-five 1 day-old broiler chickens were randomly distributed into three different dietary treatments: (1) control, (2) DON-contaminated diet with 5 mg DON/kg of feed (guidance level), and (3) DON-contaminated diet with 15 mg DON/kg of feed. Five replicated cages with three birds each were used for each treatment in a randomized complete block design. The results showed that DON was detected in excreta of birds fed contaminated diets compared with controls. The metabolite DON-3 sulphate (DON-3S) was detected in plasma and excreta in both treated groups, as well as in the liver (but only at 15 mg/kg feed). The increase in the level of DON decreased the hemoglobin concentration (p < 0.001), whereas the erythrocyte counts were only decreased at 15 mg DON/kg feed. No effect of DON on the responses to common vaccines was observed. In plasma, interleukin 8 levels in both contaminated groups were significantly higher than in the control group. The expression of interleukin 6, interleukin 1β and interferon-γ increased in jejunum tissues of broilers fed 5 mg/kg of DON compared with controls. The stress index (heterophil to lymphocyte ratio) was not affected by DON-contaminated diets compared with controls. The plasma corticosterone level was significantly lower in both DON groups compared with controls. In conclusion, DON-3S could be used as a specific biomarker of DON in different biological matrices, while the immune response in broiler chickens is stimulated by the presence of DON at the guidance level, but no adverse effect was observed on physiological stress parameters. Full article
Show Figures

Figure 1

Article
Effect of Dietary L-Methionine Supplementation on Growth Performance, Carcass Traits, and Plasma Parameters of Starter Pekin Ducks at Different Dietary Energy Levels
Animals 2021, 11(1), 144; https://doi.org/10.3390/ani11010144 - 11 Jan 2021
Cited by 1 | Viewed by 687
Abstract
A 2 × 6 factorial experiment was conducted to determine the influences of dietary metabolizable energy (ME) and methionine (Met) levels on growth performance, carcass traits, and plasma biochemical parameters of starter Pekin ducks from 1 to 21 days of age. A total [...] Read more.
A 2 × 6 factorial experiment was conducted to determine the influences of dietary metabolizable energy (ME) and methionine (Met) levels on growth performance, carcass traits, and plasma biochemical parameters of starter Pekin ducks from 1 to 21 days of age. A total of 600 one-day-old male Pekin ducklings were randomly assigned to 12 groups (six replicates each group and eight ducks per replicate) in a 2 × 6 two-factor arrangement. The basal Met levels of two basal diets (11.54 and 12.52 MJ/kg ME) were 0.31 and 0.29%, respectively. The crystalline L-Met was supplemented to yield six diets according to different supplemental levels (0, 0.05, 0.10, 0.15, 0.20, and 0.25%). The results showed that the body weight (BW) and average daily weight gain (ADG) were increased (p < 0.05) with increasing dietary Met levels. Dietary ME levels changed from 11.54 to 12.52 MJ/kg increased the BW and ADG (p < 0.05) as well as decreased the average daily feed intake and feed to gain ratio (p < 0.05). As the dietary Met level increased, leg muscle yield increased (p < 0.05). Conversely, increasing the dietary ME level decreased the leg muscle yield (p = 0.0024) and increased abdominal fat (p < 0.001). Meanwhile, the concentrations of total cholesterol (TCHO), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDLC) in plasma were decreased (p < 0.05) when the ME levels of diets changed from 11.54 to 12.52 MJ/kg. Meanwhile, the plasma TCHO and HDLC concentrations decreased (p < 0.05) as dietary Met levels increased. Based on the linear-broken line model, the dietary Met requirement of starter Pekin ducks from 1 to 21 days of age for optimal ADG were 0.362% (0.052% supplemental L-Met) at 11.54 MJ ME/kg and 0.468% (0.178% supplemental L-Met) at 12.52 MJ ME/kg, respectively, when crystal L-Met was supplemented to formulate the diets. This suggested that the Met requirement of starter Pekin ducks was affected by dietary ME levels. The data potentially provide theoretical support for the utilization of crystalline L-Met in duck production. Full article
Show Figures

Figure 1

Article
Growth Performance, Serum Biochemical Indices, Duodenal Histomorphology, and Cecal Microbiota of Broiler Chickens Fed on Diets Supplemented with Cinnamon Bark Powder at Prestarter and Starter Phases
Animals 2021, 11(1), 94; https://doi.org/10.3390/ani11010094 - 06 Jan 2021
Cited by 4 | Viewed by 908
Abstract
Ross 308 broiler chicks (n = 240) aged 1 day were assigned to five groups for eight replicates (six chicks for each) (3♂ and 3♀). Basal dietary groups were supplemented by 2000, 4000, and 6000 mg/kg cinnamon (CN) for 21 days. Basal [...] Read more.
Ross 308 broiler chicks (n = 240) aged 1 day were assigned to five groups for eight replicates (six chicks for each) (3♂ and 3♀). Basal dietary groups were supplemented by 2000, 4000, and 6000 mg/kg cinnamon (CN) for 21 days. Basal diet alone was used as a negative control, and basal antibiotic diet (Colimox) was used as a positive control. At 10, 14, and 21 days of age, chicks that received 2000 mg CN and Colimox had a higher body weight, resulting in an increase in body weight gain. CN also resulted in the maximum improvement in the feed conversion ratio and feed efficiency over 1–21 days at the level of 2000 mg/kg. At days 10, the maximum relative breast weight was 2000 mg/kg of CN. Mean serum albumin concentrations, duodenal villus height, and goblet cell density increased (p < 0.05) by 2000 mg/kg of CN, and mean serum globulin and total protein concentrations and crypt depth increased (p < 0.05) by 6000 mg/kg of CN compared with control. Increased cecal Escherichia coli number was CN dose-dependent. In conclusion, dietary inclusion of 2000 mg/kg CN can be applied as an alternative to in-feed antibiotics for broiler starter diet. Full article
Show Figures

Graphical abstract

Article
Effect of Feeding Wet Feed or Wet Feed Fermented by Bacillus licheniformis on Growth Performance, Histopathology and Growth and Lipid Metabolism Marker Genes in Broiler Chickens
Animals 2021, 11(1), 83; https://doi.org/10.3390/ani11010083 - 05 Jan 2021
Cited by 8 | Viewed by 1122
Abstract
The present study evaluated the effect of three feeding methods (dry feed, wet feed or wet feed fermented with Bacillus licheniformis) on the growth performance, intestinal histomorphometry and gene expression of the lipid metabolism- and growth-related genes of broiler chickens. A total [...] Read more.
The present study evaluated the effect of three feeding methods (dry feed, wet feed or wet feed fermented with Bacillus licheniformis) on the growth performance, intestinal histomorphometry and gene expression of the lipid metabolism- and growth-related genes of broiler chickens. A total of 360 one-day-old Cobb-500 broiler chicks were randomly allotted into three groups containing four replicates with 30 birds each. The first group (control) was fed a dry mash basal diet. The second and third groups were fed wet feed and fermented wet feed. The final body weight and weight gain were reduced (p < 0.01) in the wet feed group, while they did not differ between the fermented wet feed and dry feed groups. Feed intake was not altered, and feeding on wet feed significantly (p < 0.01) increased the feed-to-gain ratio compared to the remaining groups. No differences between the three feeding methods in carcass characteristics, blood biochemistry and nutrient digestibility were observed except for crude protein digestibility, which was increased (p < 0.01) in the fermented wet feed group. Duodenal and ileal villi heights were elevated in birds fed fermented wet feeds, while crypt depth was not altered. The expression fold of IGF-1, GH and m-TOR genes in the pectoral muscle of birds fed wet feed was decreased (p < 0.05), while myostatin gene expression was elevated. Feeding on wet feed reduced the hepatic gene expression of PPARγ and increased that of FAS. In conclusion, wet feed negatively affected the broiler chickens’ efficiency under heat stress; however, fermenting the wet feed with Bacillus licheniformis improved feed utilization and birds’ performance compared to the dry feed group. Full article
Show Figures

Figure 1

Article
Effects of Dietary Cottonseed Oil and Cottonseed Meal Supplementation on Liver Lipid Content, Fatty Acid Profile and Hepatic Function in Laying Hens
Animals 2021, 11(1), 78; https://doi.org/10.3390/ani11010078 - 04 Jan 2021
Viewed by 753
Abstract
Antinutrients, such as cyclopropene fatty acids (CPFAs) and free gossypol (FG), present together in cottonseed have caused numerous adverse effects on liver health and egg quality of laying hens, which are both likely to be related to a disturbance in lipid metabolism. This [...] Read more.
Antinutrients, such as cyclopropene fatty acids (CPFAs) and free gossypol (FG), present together in cottonseed have caused numerous adverse effects on liver health and egg quality of laying hens, which are both likely to be related to a disturbance in lipid metabolism. This experiment employed a 3 × 3 factorial arrangement using corn–soybean-meal-based diets supplemented with different levels of cottonseed oil (0%, 2%, or 4% CSO) containing CPFAs and cottonseed meal (0%, 6%, or 12% CSM) containing FG to elucidate the effects of them or their interaction on fatty acid profile, lipid content, and liver health of laying hens. An overall increase in fatty acid saturation and an overall significant decrease (p < 0.05) in monounsaturated fatty acids (MUFAs) were shown in the livers of hens fed diets with either 2% or 4% CSO. Meanwhile, the concentration of liver cholesterol, serum cholesterol, and serum LDL-c of hens fed a diet supplemented with a high level of CSO (4%) were noticeably increased (p < 0.05). Even though the supplementation of 4% CSO in diets aroused beneficial influences on liver function, a high level of CSO inclusion in laying hens’ diets is not recommended due to its hypercholesterolemia effect. In conclusion, supplementation of CSO, which contains 0.20% CPFAs, was the primary cause of alteration in fatty acid composition and cholesterol content in hens, while no interaction between CSM and CSO nor CSM effect was found for lipid profile and liver health in laying hen. Full article
Back to TopTop